Difference between revisions of "009B Sample Final 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(22 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<span class="exam">Consider the area bounded by the following two functions: | <span class="exam">Consider the area bounded by the following two functions: | ||
− | :: | + | ::<span class="exam"><math style="vertical-align: -4px">y=\cos x</math> and <math style="vertical-align: -4px">y=2-\cos x,~0\le x\le 2\pi.</math> |
− | + | <span class="exam">(a) Sketch the graphs and find their points of intersection. | |
− | + | ||
+ | <span class="exam">(b) Find the area bounded by the two functions. | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math> | ||
+ | |- | ||
+ | | | ||
+ | by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x.</math> | ||
+ | |- | ||
+ | |'''2.''' The area between two functions, <math style="vertical-align: -5px">f(x)</math> and <math style="vertical-align: -5px">g(x),</math> is given by <math>\int_a^b f(x)-g(x)~dx</math> | ||
|- | |- | ||
| | | | ||
+ | for <math style="vertical-align: -3px">a\leq x\leq b,</math> where <math style="vertical-align: -5px">f(x)</math> is the upper function and <math style="vertical-align: -5px">g(x)</math> is the lower function. | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 18: | Line 28: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we graph these two functions. |
|- | |- | ||
− | | | + | |Insert graph here |
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Line 30: | Line 36: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Setting <math style="vertical-align: -4px">\cos x=2-\cos x,</math> we get <math style="vertical-align: 0px">2\cos x=2.</math> |
|- | |- | ||
− | | | + | |Therefore, we have |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\cos x=1.</math> |
|- | |- | ||
− | | | + | |In the interval <math style="vertical-align: -4px">0\le x\le 2\pi,</math> the solutions to this equation are |
|- | |- | ||
− | | | + | | <math style="vertical-align: 0px">x=0</math> and <math style="vertical-align: 0px">x=2\pi.</math> |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Plugging these values into our equations, |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |we get the intersection points <math style="vertical-align: -4px">(0,1)</math> and <math style="vertical-align: -4px">(2\pi,1).</math> |
|- | |- | ||
− | | | + | |You can see these intersection points on the graph shown in Step 1. |
|} | |} | ||
− | '''( | + | '''(b)''' |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |The area bounded by the two functions is given by |
+ | |- | ||
+ | | | ||
+ | <math>\int_0^{2\pi} (2-\cos x)-\cos x~dx.</math> | ||
|- | |- | ||
| | | | ||
Line 76: | Line 69: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Lastly, we integrate to get |
− | |||
− | |||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_0^{2\pi} (2-\cos x)-\cos x~dx} & {=} & \displaystyle{\int_0^{2\pi} 2-2\cos x~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(2x-2\sin x)\bigg|_0^{2\pi}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(4\pi-2\sin(2\pi))-(0-2\sin(0))}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{4\pi.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>(0,1),(2\pi,1)</math> (See Step 1 above for graph) |
− | |||
− | |||
|- | |- | ||
− | |'''( | + | | '''(b)''' <math>4\pi</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 13:55, 20 May 2017
Consider the area bounded by the following two functions:
- and
(a) Sketch the graphs and find their points of intersection.
(b) Find the area bounded by the two functions.
Foundations: |
---|
1. You can find the intersection points of two functions, say |
by setting and solving for |
2. The area between two functions, and is given by |
for where is the upper function and is the lower function. |
Solution:
(a)
Step 1: |
---|
First, we graph these two functions. |
Insert graph here |
Step 2: |
---|
Setting we get |
Therefore, we have |
In the interval the solutions to this equation are |
and |
Plugging these values into our equations, |
we get the intersection points and |
You can see these intersection points on the graph shown in Step 1. |
(b)
Step 1: |
---|
The area bounded by the two functions is given by |
|
Step 2: |
---|
Lastly, we integrate to get |
|
Final Answer: |
---|
(a) (See Step 1 above for graph) |
(b) |