Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam">State the fundamental theorem of calculus, and use this theorem to find the derivative of  
 
<span class="exam">State the fundamental theorem of calculus, and use this theorem to find the derivative of  
  
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du</math>
+
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du.</math>
  
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 2 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|Review the fundamental theorem of calculus
 
|}
 
  
'''Solution:'''
+
[[009B Sample Midterm 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|The Fundamental Theorem of Calculus has two parts.
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''  
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|First, we have <math>F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du</math>.
 
|-
 
|Now, let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_5^x \frac{1}{1+u^{10}}~du</math>
 
|-
 
|So, <math>F(x)=-G(g(x))</math>.
 
|-
 
|Hence, <math>F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, <math>g'(x)=-\sin(x)</math>.
 
|-
 
| By the Fundamental Theorem of Calculus, <math>G'(x)=\frac{1}{1+x^{10}}</math>.
 
|-
 
|Hence, <math>F'(x)=-\frac{1}{1+\cos^{10}x}(-\sin(x))=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|-
 
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:29, 12 November 2017

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Solution


Detailed Solution


Return to Sample Exam