Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(12 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
::<math>\int \tan^4 x ~dx</math>
 
::<math>\int \tan^4 x ~dx</math>
  
 +
<hr>
 +
[[009B Sample Midterm 2, Problem 5 Solution|'''<u>Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Midterm 2, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|Review <math>u</math>-substitution and
 
|-
 
|trig identities
 
|}
 
  
'''Solution:'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write <math>\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx</math>.
 
|-
 
|Using the trig identity <math>\sec^2(x)=\tan^2(x)+1</math>, we have <math>\tan^2(x)=\sec^2(x)-1</math>.
 
|-
 
|Plugging in the last identity into one of the <math>\tan^2(x)</math>, we get
 
|-
 
|<math>\int \tan^4(x)~dx=\int \tan^2(x) (\sec^2(x)-1)~dx=\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>
 
|-
 
|using the identity again on the last equality.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, we have <math>\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>.
 
|-
 
|For the first integral, we need to use <math>u</math>-substitution. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2(x)dx</math>.
 
|-
 
|So, we have
 
|-
 
|<math>\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|We integrate to get
 
|-
 
| <math>\int \tan^4(x)~dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|<math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
 
|}
 
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:03, 12 November 2017

Evaluate the integral:


Solution


Detailed Solution


Return to Sample Exam