Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Compute the following integrals:
+
<span class="exam"> Find a curve &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; with the following properties:  
  
::<span class="exam">a) <math>\int x^2\sin (x^3) ~dx</math>
+
<span class="exam">(i) &nbsp; <math style="vertical-align: -5px">f''(x)=6x</math>  
::<span class="exam">b) <math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx</math>
 
  
 +
<span class="exam">(ii) &nbsp; Its graph passes through the point &nbsp;<math style="vertical-align: -5px">(0,1)</math>&nbsp; and has a horizontal tangent there.
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 3 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
| u substitution
 
|}
 
  
'''Solution:'''
+
[[009B Sample Midterm 3, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using u substitution. Let <math>u=x^3</math>. Then, <math>du=3x^2dx</math>.
 
|-
 
|Therefore, we have
 
|-
 
|<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We integrate to get
 
|-
 
|<math>\int x^2\sin (x^3) ~dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Again, we proceed using u substitution. Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>.
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.
 
|-
 
|We have <math>u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, we get
 
|-
 
|<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math>\frac{-1}{3}\cos(x^3)+C</math>
 
|-
 
|'''(b)''' <math>0</math>
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:28, 23 November 2017

Find a curve    with the following properties:

(i)  

(ii)   Its graph passes through the point    and has a horizontal tangent there.


Solution


Detailed Solution


Return to Sample Exam