Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(19 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span class="exam">This problem has three parts:
+
<span class="exam"> Evaluate
  
::<span class="exam">a) State the fundamental theorem of calculus.
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>  
::<span class="exam">b) Compute <math>\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>
 
::<span class="exam">c) Evaluate <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx</math>
 
  
 +
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Midterm 2, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009B Sample Midterm 2, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|The Fundamental Theorem of Calculus has two parts.
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let <math>F(x)=\int_0^{\cos (x)}\sin (t)~dt</math>. The problem is asking us to find <math>F'(x)</math>.
 
|-
 
|Let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_0^x \sin(t)~dt</math>.
 
|-
 
|Then, <math>F(x)=G(g(x))</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If we take the derivative of both sides of the last equation, we get <math>F'(x)=G'(g(x))g'(x)</math> by the Chain Rule.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, <math>g'(x)=-\sin(x)</math> and <math>G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''.
 
|-
 
|Since <math>G'(g(x))=\sin(g(x))=\sin(\cos(x))</math>, we have <math>F'(x)=G'(g(x))g'(x)=\sin(\cos(x))(-\sin(x))</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
|-
 
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\left.\tan(x)\right|_0^{\frac{\pi}{4}}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, we get
 
|-
 
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|-
 
|'''(b)''' <math>\sin(\cos(x))(-\sin(x)</math>
 
|-
 
|'''(c)''' <math>1</math>
 
|}
 
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:00, 12 November 2017

Evaluate

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam