Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span class="exam">Find the average value of the function on the given interval.
+
<span class="exam">Evaluate the indefinite and definite integrals.
  
::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math>
+
<span class="exam">(a) &nbsp; <math>\int x^2\sqrt{1+x^3}~dx</math>
  
 +
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 1, Problem 2 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|The average value of a function <math>f(x)</math> on an interval <math>[a,b]</math> is given by <math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)dx</math>.
 
|}
 
  
'''Solution:'''
+
[[009B Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using the formula given in the Foundations sections, we have:
 
|-
 
|<math>f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4dx=\int_0^2 x^3(1+x^2)^4dx</math>  
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since <math>(1+x^2)^2=1+2x^2+x^4</math>, we have
 
|-
 
|<math>(1+x^2)^4=(1+x^2)^2(1+x^2)^2=(1+2x^2+x^4)(1+2x^2+x^4)=1+4x^2+6x^4+4x^6+x^8</math>.
 
|-
 
|So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x^3(1+4x^2+6x^4+4x^6+x^8)dx</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|We distribute to get
 
|-
 
|<math>f_{\text{avg}}=\int_0^2 x^3(1+4x^2+6x^4+4x^6+x^8)dx=\int_0^2 (x^3+4x^5+6x^7+4x^9+x^{11})dx</math>.
 
|-
 
|Now, we integrate to get
 
|-
 
|<math>f_{\text{avg}}=\left.\frac{x^4}{4}+4\frac{2x^6}{3}+\frac{3x^8}{4}+\frac{2x^{10}}{5}+\frac{x^{12}}{12}\right|_{0}^{2}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:01, 12 November 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam