Difference between revisions of "022 Sample Final A, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
  
<span style="font-size:135%"><font face=Times Roman><span class="exam"> Use implicit differentiation to find <math>\frac{dy}{dx}: \qquad x+y = x^3y^3</math>
+
<span class="exam"> Use implicit differentiation to find <math>\frac{dy}{dx}: \qquad x+y = x^3y^3</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 8: Line 8:
 
|When we use implicit differentiation, we combine the chain rule with the fact that <math style="vertical-align: -18%">y</math> is a function of <math style="vertical-align: 0%">x</math>, and could really be written as <math style="vertical-align: -21%">y(x).</math> Because of this, the derivative of <math style="vertical-align:-17%">y^3</math> with respect to <math style="vertical-align: 0%">x</math> requires the chain rule, so  
 
|When we use implicit differentiation, we combine the chain rule with the fact that <math style="vertical-align: -18%">y</math> is a function of <math style="vertical-align: 0%">x</math>, and could really be written as <math style="vertical-align: -21%">y(x).</math> Because of this, the derivative of <math style="vertical-align:-17%">y^3</math> with respect to <math style="vertical-align: 0%">x</math> requires the chain rule, so  
 
|-
 
|-
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{d}{dx}\left(y^{3}\right)=3y^{2}\cdot\frac{dy}{dt}.</math>
+
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{d}{dx}\left(y^{3}\right)=3y^{2}\cdot\frac{dy}{dx}.</math>
 +
|-
 +
|For this problem we also need to use the product rule.
 
|}
 
|}
  
&nbsp;'''Solution:'''
+
'''Solution:'''
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
!Step 1: &nbsp;
 
|-
 
|-
|First, we differentiate each term separately with respect to <math style="vertical-align: 0%">x</math> to find that&thinsp; <math style="vertical-align: -18%">x^{3}-y^{3}-y=x</math> &thinsp;differentiates implicitly to
+
|First, we differentiate each term separately with respect to <math style="vertical-align: 0%">x</math> and apply the product rule on the right hand side to find that&thinsp; <math style="vertical-align: -18%">x + y = x^3y^3</math> &thinsp;differentiates implicitly to
 
|-
 
|-
|&nbsp;&nbsp;&nbsp;&nbsp; <math>3x^{2}-3y^{2}\cdot\frac{dy}{dx}-\frac{dy}{dx}=1</math>.
+
|
 +
::<math>1 + \frac{dy}{dx} = 3x^2y^3 + 3x^3y^2 \cdot \frac{dy}{dx}</math>.
 
|}
 
|}
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since they don't ask for a general expression of <math style="vertical-align:-24%">dy/dx</math>, but rather a particular value at a particular point, we can plug in the values <math style="vertical-align:-5%">x=1</math> and <math style="vertical-align:-18%">y=0</math> &thinsp;to find
+
|Now we need to solve for <math>\frac{dy}{dx}</math> and doing so we find that <math>\frac{dy}{dx} = \frac{3x^2y^3 - 1}{1 - 3x^3y^2}</math>
|-
 
|&nbsp;&nbsp;&nbsp;&nbsp; <math>3(1)^{2}-3(0)^{2}\cdot\frac{dy}{dx}-\frac{dy}{dx}=1,</math>
 
|-
 
|which is equivalent to <math style="vertical-align:-60%">3-\frac{dy}{dx}=1</math>. This solves to <math style="vertical-align:-24%">dy/dx=2.</math>
 
 
|}
 
|}
  
Line 33: Line 33:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp;&nbsp;&nbsp;&nbsp; <math style="vertical-align:-24%">dy/dx=2.</math>
+
|<math>\frac{dy}{dx} = \frac{3x^2y^3 - 1}{1 - 3x^3y^2}</math>
 
|}
 
|}
 
[[022_Exam_1_Sample_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_1_Sample_A|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 13:16, 30 May 2015


Use implicit differentiation to find

Foundations:  
When we use implicit differentiation, we combine the chain rule with the fact that is a function of , and could really be written as Because of this, the derivative of with respect to requires the chain rule, so
    
For this problem we also need to use the product rule.

Solution:

Step 1:  
First, we differentiate each term separately with respect to and apply the product rule on the right hand side to find that   differentiates implicitly to
.
Step 2:  
Now we need to solve for and doing so we find that
Final Answer:  

Return to Sample Exam