Difference between revisions of "005 Sample Final A, Question 5"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Solve the following inequality. Your answer should be in interval notation. <math>\frac{3x+5}{x+2}\ge 2</math> {| class="mw-collapsible mw-collapsed" style...") |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Step 1: |
|- | |- | ||
− | | | + | |We start by subtracting 2 from each side to get <math>\frac{3x + 5}{x + 2} - \frac{2x + 4}{x + 2} = \frac{x + 1}{x + 2} \ge 0</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
|- | |- | ||
− | | | + | |<table border="1" cellspacing="0" cellpadding="6" align = "center"> |
+ | <tr> | ||
+ | <td align = "center"><math> x:</math></td> | ||
+ | <td align = "center"><math> x<-2 </math></td> | ||
+ | <td align = "center"><math> x=-2 </math></td> | ||
+ | <td align = "center"><math> -2<x<-1 </math></td> | ||
+ | <td align = "center"><math> x=-1 </math></td> | ||
+ | <td align = "center"><math>-1<x</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math> Sign: </math></td> | ||
+ | <td align = "center"><math> (+) </math></td> | ||
+ | <td align = "center"><math> VA </math></td> | ||
+ | <td align = "center"><math> (-) </math></td> | ||
+ | <td align = "center"><math> 0 </math></td> | ||
+ | <td align = "center"><math> (+)</math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
|- | |- | ||
− | | | + | | Now we just write, in interval notation, the intervals over which the denominator is nonnegative. |
|- | |- | ||
− | | | + | | The domain of the function is: <math>(-\infty, -2) \cup [-1, \infty)</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
|- | |- | ||
− | | | + | |<math>(-\infty, -2)\cup[1, \infty)</math> |
− | |||
− | |||
|} | |} |
Latest revision as of 21:33, 21 May 2015
Question Solve the following inequality. Your answer should be in interval notation.
Step 1: |
---|
We start by subtracting 2 from each side to get |
Step 2: | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Step 3: |
---|
Now we just write, in interval notation, the intervals over which the denominator is nonnegative. |
The domain of the function is: |
Final Answer: |
---|