Difference between revisions of "005 Sample Final A, Question 2"
Jump to navigation
Jump to search
(Created page with "'''Question''' Find the domain of the following function. Your answer should be in interval notation <math> f(x) = \frac{1}{\sqrt{x^2-x-2}}</math> <br> {| class="mw-collapsib...") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Foundations: |
|- | |- | ||
− | | | + | |1) What is the domain of <math>\frac{1}{\sqrt{x}}</math>? |
+ | |- | ||
+ | |2) How can we factor <math>x^2 - x - 2</math>? | ||
|- | |- | ||
− | | | + | | Answer: |
+ | |- | ||
+ | |1) The domain is <math>(0, \infty)</math>. The domain of <math>\frac{1}{x}</math> is <math>[0, \infty)</math>, but we have to remove zero from the domain since we cannot divide by 0. | ||
|- | |- | ||
− | | | + | |2) <math>x^2 - x -2 = (x - 2)(x + 1)</math> |
+ | |} | ||
+ | |||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 1: | ||
|- | |- | ||
− | | | + | |We start by factoring <math>x^2 - x - 2</math> into <math>(x - 2)(x + 1)</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
|- | |- | ||
− | | | + | |Since we cannot divide by zero, and we cannot take the square root of a negative number, we use a sign chart to determine when <math>(x - 2)(x + 1) > 0</math> |
|- | |- | ||
− | | | + | |<table border="1" cellspacing="0" cellpadding="6" align = "center"> |
+ | <tr> | ||
+ | <td align = "center"><math> x:</math></td> | ||
+ | <td align = "center"><math> x<-1 </math></td> | ||
+ | <td align = "center"><math> x=-1 </math></td> | ||
+ | <td align = "center"><math> -1<x<2 </math></td> | ||
+ | <td align = "center"><math> x=2 </math></td> | ||
+ | <td align = "center"><math>2<x</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math> Sign: </math></td> | ||
+ | <td align = "center"><math> (+) </math></td> | ||
+ | <td align = "center"><math> 0 </math></td> | ||
+ | <td align = "center"><math> (-) </math></td> | ||
+ | <td align = "center"><math> 0 </math></td> | ||
+ | <td align = "center"><math> (+)</math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
+ | |- | ||
+ | | Now we just write, in interval notation, the intervals over which the denominator is positive. | ||
+ | |- | ||
+ | | The domain of the function is: <math>(-\infty, -1) \cup (2, \infty)</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
+ | |- | ||
+ | | The domain of the function is: <math>(-\infty, -1) \cup (2, \infty)</math> | ||
|} | |} |
Latest revision as of 21:31, 21 May 2015
Question Find the domain of the following function. Your answer should be in interval notation
Foundations: |
---|
1) What is the domain of ? |
2) How can we factor ? |
Answer: |
1) The domain is . The domain of is , but we have to remove zero from the domain since we cannot divide by 0. |
2) |
Step 1: |
---|
We start by factoring into |
Step 2: | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Since we cannot divide by zero, and we cannot take the square root of a negative number, we use a sign chart to determine when | ||||||||||||
Step 3: |
---|
Now we just write, in interval notation, the intervals over which the denominator is positive. |
The domain of the function is: |
Final Answer: |
---|
The domain of the function is: |