Difference between revisions of "005 Sample Final A, Question 14"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
''' Question ''' Prove the following identity, <br>
 
''' Question ''' Prove the following identity, <br>
 
<center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center>
 
<center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center>
 
  
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 1:
+
! Foundations:
 +
|-
 +
|1) What can you multiply <math>1- \sin(\theta)</math> by to obtain a formula that is equivalent to something involving <math>\cos</math>?
 
|-
 
|-
|
+
|Answers:
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 2:
 
 
|-
 
|-
|  
+
|1) You can multiply <math>1 - \sin(\theta)</math> by <math>\frac{1 + \sin(\theta)}{\1 + \sin(\theta)}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 3:
+
! Step 1:
 
|-
 
|-
|  
+
|We start with the left hand side. We have <math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin(\theta)}{\cos(\theta)}\Bigg(\frac{1+\sin(\theta)}{1+\sin(\theta)}\Bigg)</math>.
|-
 
|
 
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 4:
+
! Step 2:
 
|-
 
|-
|
+
| Simplifying, we get <math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin^2(\theta)}{\cos(\theta)(1+\sin(\theta))}</math>.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 5:
+
! Step 3:
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
| Since <math>1-\sin^2(\theta)=\cos^2(\theta)</math>, we have
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Final Answer:
 
 
|-
 
|-
|  
+
|<math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos^2(\theta)}{\cos(\theta)(1+\sin(\theta))}=\frac{\cos(\theta)}{1+\sin(\theta)}</math>
 
|}
 
|}

Latest revision as of 21:10, 21 May 2015

Question Prove the following identity,


Foundations:
1) What can you multiply by to obtain a formula that is equivalent to something involving ?
Answers:
1) You can multiply by Failed to parse (syntax error): {\displaystyle \frac{1 + \sin(\theta)}{\1 + \sin(\theta)}}
Step 1:
We start with the left hand side. We have .
Step 2:
Simplifying, we get .
Step 3:
Since , we have