Difference between revisions of "005 Sample Final A, Question 14"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Prove the following identity, <br> <center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center> {| class="mw-colla...") |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
''' Question ''' Prove the following identity, <br> | ''' Question ''' Prove the following identity, <br> | ||
<center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center> | <center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center> | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Foundations: |
+ | |- | ||
+ | |1) What can you multiply <math>1- \sin(\theta)</math> by to obtain a formula that is equivalent to something involving <math>\cos</math>? | ||
|- | |- | ||
− | | | + | |Answers: |
|- | |- | ||
− | | | + | |1) You can multiply <math>1 - \sin(\theta)</math> by <math>\frac{1 + \sin(\theta)}{\1 + \sin(\theta)}</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 1: | ||
|- | |- | ||
− | | | + | |We start with the left hand side. We have <math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin(\theta)}{\cos(\theta)}\Bigg(\frac{1+\sin(\theta)}{1+\sin(\theta)}\Bigg)</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
|- | |- | ||
− | | | + | | Simplifying, we get <math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin^2(\theta)}{\cos(\theta)(1+\sin(\theta))}</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
|- | |- | ||
− | | | + | | Since <math>1-\sin^2(\theta)=\cos^2(\theta)</math>, we have |
|- | |- | ||
− | | | + | |<math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos^2(\theta)}{\cos(\theta)(1+\sin(\theta))}=\frac{\cos(\theta)}{1+\sin(\theta)}</math> |
|} | |} |
Latest revision as of 21:10, 21 May 2015
Question Prove the following identity,
Foundations: |
---|
1) What can you multiply by to obtain a formula that is equivalent to something involving ? |
Answers: |
1) You can multiply by Failed to parse (syntax error): {\displaystyle \frac{1 + \sin(\theta)}{\1 + \sin(\theta)}} |
Step 1: |
---|
We start with the left hand side. We have . |
Step 2: |
---|
Simplifying, we get . |
Step 3: |
---|
Since , we have |