Difference between revisions of "005 Sample Final A, Question 13"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Give the exact value of the following if its defined, otherwise, write undefined. <br> <math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\ri...")
 
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Foundations:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
|1) What is the domain of <math>\sin^{-1}?</math>
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
|2) What are the reference angles for <math>\frac{-32\pi}{3}</math> and <math>\frac{-17\pi}{6}</math>?
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
|Answers:
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
|1) The domain is <math>[-1, 1].</math>
 
|-
 
|-
|e) True.
+
|2) The reference angle for <math>\frac{-32\pi}{3}</math> is <math>\frac{4\pi}{3}</math>, and the reference angle for <math>\frac{-17\pi}{6}</math> is <math>\frac{7\pi}{6}</math>
 +
|}
 +
 
 +
 
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 
|-
 
|-
|f) False.  
+
| For (a), we want an angle <math>\theta</math> such that <math>\sin(\theta)=2</math>. Since <math>-1\leq \sin (\theta)\leq 1</math>, it is impossible
 +
|-
 +
|for <math>\sin(\theta)=2</math>. So, <math>\sin^{-1}(2)</math> is undefined.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 +
|-
 +
| For (b), we need to find the reference angle for <math>\frac{-32\pi}{3}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the
 +
|-
 +
|reference angle <math>\frac{4\pi}{3}</math>. So, <math>\sin\left(\frac{-32\pi}{3}\right)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 +
|-
 +
| For (c), we need to find the reference angle for <math>\frac{-17\pi}{6}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the
 +
|-
 +
|reference angle <math>\frac{7\pi}{6}</math>. Since <math>\cos\left(\frac{7\pi}{6}\right)=\frac{-\sqrt{3}}{2}</math>, we have
 +
|-
 +
|<math>\sec\left(\frac{-17\pi}{6}\right)=\sec\left(\frac{7\pi}{6}\right)=\frac{2}{-\sqrt{3}}=\frac{-2\sqrt{3}}{3}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
|a) undefined
 +
|-
 +
|b) <math>\frac{-\sqrt{3}}{2}</math>
 +
|-
 +
|c)<math>\frac{-2\sqrt{3}}{3}</math>
 
|}
 
|}

Latest revision as of 19:58, 21 May 2015

Question Give the exact value of the following if its defined, otherwise, write undefined.


Foundations:
1) What is the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^{-1}?}
2) What are the reference angles for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-32\pi}{3}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-17\pi}{6}} ?
Answers:
1) The domain is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-1, 1].}
2) The reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-32\pi}{3}} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4\pi}{3}} , and the reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-17\pi}{6}} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7\pi}{6}}


Step 1:
For (a), we want an angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(\theta)=2} . Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \sin (\theta)\leq 1} , it is impossible
for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(\theta)=2} . So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^{-1}(2)} is undefined.
Step 2:
For (b), we need to find the reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-32\pi}{3}} . If we add multiples of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi} to this angle, we get the
reference angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4\pi}{3}} . So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin\left(\frac{-32\pi}{3}\right)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}} .
Step 3:
For (c), we need to find the reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-17\pi}{6}} . If we add multiples of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi} to this angle, we get the
reference angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7\pi}{6}} . Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos\left(\frac{7\pi}{6}\right)=\frac{-\sqrt{3}}{2}} , we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec\left(\frac{-17\pi}{6}\right)=\sec\left(\frac{7\pi}{6}\right)=\frac{2}{-\sqrt{3}}=\frac{-2\sqrt{3}}{3}} .
Final Answer:
a) undefined
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-\sqrt{3}}{2}}
c)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2\sqrt{3}}{3}}