Difference between revisions of "005 Sample Final A, Question 11"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Solve the following equation in the interval <math> [0, 2\pi)</math> <br> <center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center> {|...") |
|||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
''' Question ''' Solve the following equation in the interval <math> [0, 2\pi)</math> <br> | ''' Question ''' Solve the following equation in the interval <math> [0, 2\pi)</math> <br> | ||
<center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center> | <center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center> | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Foundations: | ||
+ | |- | ||
+ | |1) Which trigonometric identities are useful in this problem? | ||
+ | |- | ||
+ | |Answer: | ||
+ | |- | ||
+ | |1) <math>\sin^2(\theta)=1-\cos^2(\theta)</math> and | ||
+ | |} | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 1: | ||
+ | |- | ||
+ | | We need to get rid of the <math>\sin^2(\theta)</math> term. Since <math>\sin^2(\theta)=1-\cos^2(\theta)</math>, the equation becomes | ||
+ | |- | ||
+ | |<math>(1-\cos^2(\theta))-\cos^2(\theta)=1+\cos(\theta) </math>. | ||
+ | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Step 2: |
|- | |- | ||
− | | | + | | If we simplify and move all the terms to the right hand side, we have <math>0=2\cos^2(\theta)+\cos(\theta)</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
|- | |- | ||
− | | | + | | Now, factoring, we have <math>0=\cos(\theta)(2\cos(\theta)+1)</math>. Thus, either <math>\cos(\theta)=0</math> or <math>2\cos(\theta)+1=0</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 4: | ||
|- | |- | ||
− | | | + | | The solutions to <math>\cos(\theta)=0</math> in <math> [0, 2\pi)</math> are <math>\theta=\frac{\pi}{2}</math> or <math>\theta=\frac{3\pi}{2}</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 5: | ||
|- | |- | ||
− | | | + | | The solutions to <math>2\cos(\theta)+1=0</math> are angles that satisfy <math>\cos(\theta)=\frac{-1}{2}</math>. In <math> [0, 2\pi)</math>, the |
|- | |- | ||
− | | | + | | solutions are <math>\theta=\frac{2\pi}{3}</math> or <math>\theta=\frac{4\pi}{3}</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
|- | |- | ||
− | | | + | | The solutions are <math>\frac{\pi}{2},\frac{3\pi}{2},\frac{2\pi}{3},\frac{4\pi}{3}</math>. |
|} | |} |
Latest revision as of 20:43, 21 May 2015
Question Solve the following equation in the interval
Foundations: |
---|
1) Which trigonometric identities are useful in this problem? |
Answer: |
1) and |
Step 1: |
---|
We need to get rid of the term. Since , the equation becomes |
. |
Step 2: |
---|
If we simplify and move all the terms to the right hand side, we have . |
Step 3: |
---|
Now, factoring, we have . Thus, either or . |
Step 4: |
---|
The solutions to in are or . |
Step 5: |
---|
The solutions to are angles that satisfy . In , the |
solutions are or . |
Final Answer: |
---|
The solutions are . |