Difference between revisions of "005 Sample Final A, Question 4"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
'''Question''' Find the inverse of the following function <math> f(x) = \frac{3x}{2x-1}</math>
 
'''Question''' Find the inverse of the following function <math> f(x) = \frac{3x}{2x-1}</math>
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Foundations:
 +
|-
 +
|1) How would you find the inverse for a simpler function like <math>f(x) = 3x + 5</math>?
 +
|-
 +
|Answer:
 +
|-
 +
|1) you would replace f(x) by y, switch x and y, and finally solve for y.
 +
|}
 +
 +
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 11: Line 24:
 
|-
 
|-
 
| Now we have to solve for y:
 
| Now we have to solve for y:
<math> \begin{array}{rcl}
+
::<math> \begin{array}{rcl}
 
x & = & \frac{3y}{2y-1}\\
 
x & = & \frac{3y}{2y-1}\\
 
x(2y - 1) & = & 3y\\
 
x(2y - 1) & = & 3y\\
Line 18: Line 31:
 
y(2x - 3) & = & x\\
 
y(2x - 3) & = & x\\
 
y & = & \frac{x}{2x - 3}
 
y & = & \frac{x}{2x - 3}
</math>
+
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
|<math> y = \frac{x}{2x-3}</math>
 
|}
 
|}

Latest revision as of 20:16, 21 May 2015

Question Find the inverse of the following function

Foundations:
1) How would you find the inverse for a simpler function like ?
Answer:
1) you would replace f(x) by y, switch x and y, and finally solve for y.



Step 1:
Switch f(x) for y, to get , then switch y and x to get
Step 2:
Now we have to solve for y:
Final Answer: