Difference between revisions of "005 Sample Final A, Question 14"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Prove the following identity, <br> <center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center> {| class="mw-colla...")
 
Line 5: Line 5:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 1:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
|
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
|  
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
|  
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
|  
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 4:
 
|-
 
|-
|e) True.
+
|
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 5:
 
|-
 
|-
|f) False.
+
|
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
|
 
|}
 
|}

Revision as of 12:20, 20 May 2015

Question Prove the following identity,


Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Final Answer: