Difference between revisions of "005 Sample Final A, Question 11"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Solve the following equation in the interval <math> [0, 2\pi)</math> <br> <center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center> {|...") |
Kayla Murray (talk | contribs) |
||
Line 5: | Line 5: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Step 1: |
|- | |- | ||
− | | | + | | We need to get rid of the <math>\sin^2(\theta)</math> term. Since <math>\sin^2(\theta)=1-\cos^2(\theta)</math>, the equation becomes |
|- | |- | ||
− | | | + | |<math>(1-\cos^2(\theta))-\cos^2(\theta)=1+\cos(\theta) </math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
|- | |- | ||
− | | | + | | If we simplify and move all the terms to the right hand side, we have <math>0=2\cos^2(\theta)+\cos(\theta)</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
|- | |- | ||
− | | | + | | Now, factoring, we have <math>0=\cos(\theta)(2\cos(\theta)+1)</math>. Thus, either <math>\cos(\theta)=0</math> or <math>2\cos(\theta)+1=0</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 4: | ||
|- | |- | ||
− | | | + | | |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 5: | ||
|- | |- | ||
− | | | + | | The solutions to <math>\cos(\theta)=0</math> in <math> [0, 2\pi)</math> are <math>\theta=\frac{\pi}{2}</math> or |
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
+ | |- | ||
+ | | | ||
|} | |} |
Revision as of 10:03, 20 May 2015
Question Solve the following equation in the interval
Step 1: |
---|
We need to get rid of the term. Since , the equation becomes |
. |
Step 2: |
---|
If we simplify and move all the terms to the right hand side, we have . |
Step 3: |
---|
Now, factoring, we have . Thus, either or . |
Step 4: |
---|
Step 5: |
---|
The solutions to in are or |
Final Answer: |
---|