Difference between revisions of "005 Sample Final A, Question 13"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Give the exact value of the following if its defined, otherwise, write undefined. <br> <math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\ri...")
 
Line 4: Line 4:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 1:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
| For (a), we want an angle <math>\theta</math> such that <math>\sin(\theta)=2</math>. Since <math>-1\leq \sin (\theta)\leq 1</math>, it is impossible
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
|for <math>\sin(\theta)=2</math>. So, <math>\sin^{-1}(2)</math> is undefined.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
| For (b), we need to find the reference angle for <math>\frac{-32\pi}{3}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
|reference angle <math>\frac{4\pi}{3}</math>. So, <math>\sin\left(\frac{-32\pi}{3}\right)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 
|-
 
|-
|e) True.
+
| For (c), we need to find the reference angle for <math>\frac{-17\pi}{6}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the
 
|-
 
|-
|f) False.  
+
|reference angle <math>\frac{7\pi}{6}</math>. Since <math>\cos\left(\frac{7\pi}{6}\right)=\frac{-\sqrt{3}}{2}</math>, we have
 +
|-
 +
|<math>\sec\left(\frac{-17\pi}{6}\right)=\sec\left(\frac{7\pi}{6}\right)=\frac{2}{-\sqrt{3}}=\frac{-2\sqrt{3}}{3}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
|a) undefined
 +
|-
 +
|b) <math>\frac{-\sqrt{3}}{2}</math>
 +
|-
 +
|c)<math>\frac{-2\sqrt{3}}{3}</math>
 
|}
 
|}

Revision as of 15:59, 19 May 2015

Question Give the exact value of the following if its defined, otherwise, write undefined.


Step 1:
For (a), we want an angle such that . Since , it is impossible
for . So, is undefined.
Step 2:
For (b), we need to find the reference angle for . If we add multiples of to this angle, we get the
reference angle . So, .
Step 3:
For (c), we need to find the reference angle for . If we add multiples of to this angle, we get the
reference angle . Since , we have
.
Final Answer:
a) undefined
b)
c)