Difference between revisions of "005 Sample Final A, Question 10"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Write the partial fraction decomposition of the following, <center> <math> \frac{x+2}{x^3-2x^2+x}</math></center> {| class="mw-collapsible mw-collapsed" sty...")
 
Line 3: Line 3:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 1:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
| First, we factor the denominator. We have <math>x^3-2x^2+x=x(x^2-2x+1)=x(x-1)^2</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
| Since we have a repeated factor in the denominator, we set <math>\frac{x+2}{x(x-1)^2}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
| Multiplying both sides of the equation by the denominator <math>x(x-1)^2</math>, we get
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
| <math>x+2=A(x-1)^2+B(x)(x-1)+Cx</math>.  
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 4:
 
|-
 
|-
|e) True.
+
| If we let <math>x=0</math>, we get <math>2=A</math>. If we let <math>x=1</math>, we get <math>3=C</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 5:
 
|-
 
|-
|f) False.  
+
| To solve for <math>B</math>, we plug in <math>A=2</math> and <math>C=3</math> and simplify. We have
 +
|-
 +
|<math>x+2=2(x-1)^2+B(x)(x-1)+3x=2x^2-4x+2+Bx^2-Bx+3x. So, <math>x+2=(2+B)x^2+(-1-B)x+2</math>. Since both sides are equal,
 +
|-
 +
|we must have <math>2+B=0</math> and <math>-1-B=1</math>. So, <math>B=2</math>. Thus, the decomposition is <math>\frac{x+2}{x(x-1)^2}=\frac{2}{x}+\frac{2}{x-1}+\frac{3}{(x-1)^2}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
| <math>\frac{x+2}{x(x-1)^2}=\frac{2}{x}+\frac{2}{x-1}+\frac{3}{(x-1)^2}</math>
 
|}
 
|}

Revision as of 15:35, 19 May 2015

Question Write the partial fraction decomposition of the following,


Step 1:
First, we factor the denominator. We have
Step 2:
Since we have a repeated factor in the denominator, we set .
Step 3:
Multiplying both sides of the equation by the denominator , we get
.
Step 4:
If we let , we get . If we let , we get .
Step 5:
To solve for , we plug in and and simplify. We have
. Since both sides are equal,
we must have and . So, . Thus, the decomposition is .
Final Answer: