Difference between revisions of "022 Exam 2 Sample A"
(→ Problem 8 ) |
(→ Problem 9 ) |
||
Line 29: | Line 29: | ||
== [[022_Exam_2_Sample_A,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | == [[022_Exam_2_Sample_A,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
<span class="exam"> | <span class="exam"> | ||
− | Find all relative extrema and points of inflection for the function <math style="vertical-align: - | + | Find all relative extrema and points of inflection for the function <math style="vertical-align: -45%">g(x) = \frac{2}{3}x^3 + x^2 - 12x</math>. Be sure to give coordinate pairs for each point. You do not need to draw the graph. |
== [[022_Exam_2_Sample_A,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == | == [[022_Exam_2_Sample_A,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == | ||
<span class="exam"> | <span class="exam"> | ||
'''Use calculus to set up and solve the word problem:''' Find the length and width of a rectangle that has perimeter 48 meters and maximum area. | '''Use calculus to set up and solve the word problem:''' Find the length and width of a rectangle that has perimeter 48 meters and maximum area. |
Revision as of 19:19, 13 May 2015
This is a sample, and is meant to represent the material usually covered in Math 22 for the second exam. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Problem 1
Find the derivative of
Problem 2
Find the antiderivative of
Problem 3
Find the antiderivative of
Problem 4
Find the antiderivative of
Problem 5
Set up the equation to solve. You only need to plug in the numbers - not solve for particular values!
How much money would I have after 6 years if I invested $3000 in a bank account that paid 4.5% interest,
- (a) compounded monthly?
- (b) compounded continuously?
Problem 6
Find the area under the curve of between and .
Problem 7
Find the quantity that produces maximum profit, given the demand function and cost function .
Problem 8
Use differentials to approximate the change in profit given units and units, where profit is given by .
Problem 9
Find all relative extrema and points of inflection for the function . Be sure to give coordinate pairs for each point. You do not need to draw the graph.
Problem 10
Use calculus to set up and solve the word problem: Find the length and width of a rectangle that has perimeter 48 meters and maximum area.