Difference between revisions of "005 Sample Final A, Question 7"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Solve the following equation, <math> 2\log_5(x) = 3\log_5(4)</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left...") |
|||
Line 3: | Line 3: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Step 1 |
|- | |- | ||
− | | | + | | Use the rules of logarithms to move the 2 and the 3 to exponents. So <math>\log_5(x^2) = \log_5(4^3)</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2 | ||
|- | |- | ||
− | | | + | | By the definition of logarithm, we find that <math>x^2 = 4^3</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3 | ||
|- | |- | ||
− | | | + | | Taking the square root of both sides we get <math>x = 8</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer | ||
|- | |- | ||
− | | | + | | <math> x = 8</math> |
− | |||
− | |||
− | |||
− | |||
|} | |} |
Revision as of 22:05, 10 May 2015
Question Solve the following equation,
Step 1 |
---|
Use the rules of logarithms to move the 2 and the 3 to exponents. So |
Step 2 |
---|
By the definition of logarithm, we find that |
Step 3 |
---|
Taking the square root of both sides we get |
Final Answer |
---|