Difference between revisions of "005 Sample Final A, Question 7"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Solve the following equation,      <math> 2\log_5(x) = 3\log_5(4)</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left...")
 
Line 3: Line 3:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 1
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
| Use the rules of logarithms to move the 2 and the 3 to exponents. So <math>\log_5(x^2) = \log_5(4^3)</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
| By the definition of logarithm, we find that <math>x^2 = 4^3</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
| Taking the square root of both sides we get <math>x = 8</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
| <math> x = 8</math>
|-
 
|e) True.
 
|-
 
|f) False.
 
 
|}
 
|}

Revision as of 22:05, 10 May 2015

Question Solve the following equation,     


Step 1
Use the rules of logarithms to move the 2 and the 3 to exponents. So
Step 2
By the definition of logarithm, we find that
Step 3
Taking the square root of both sides we get
Final Answer