Difference between revisions of "005 Sample Final A, Question 3"
Jump to navigation
Jump to search
(Created page with "'''Question ''' Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left...") |
|||
| Line 1: | Line 1: | ||
'''Question ''' Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math> | '''Question ''' Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math> | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! | + | ! Step 1 |
|- | |- | ||
| − | | | + | |First we find the domain of g. Since f <math>\circ</math> g = f(g(x)). So if x is not in the domain of g, it is not in the domain of f <math>\circ</math> g. The domain of g is <math>[1, \infty)</math>. |
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Step 2 | ||
|- | |- | ||
| − | | | + | |To find f <math>\circ</math> g we replace any occurrence of x in f with g, to yield <math>(\sqrt{x - 1})^2 + 1 = x - 1 + 1 = x </math> |
| − | + | |} | |
| − | + | ||
| − | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | |
| − | + | ! Final Answers | |
| − | |- | ||
| − | |||
|- | |- | ||
| − | |f) | + | |f <math>\circ</math> g = <math> x </math>, and the domain is <math>[1, \infty)</math>. |
|} | |} | ||
Revision as of 09:21, 8 May 2015
Question Find f g and its domain if
| Step 1 |
|---|
| First we find the domain of g. Since f g = f(g(x)). So if x is not in the domain of g, it is not in the domain of f g. The domain of g is . |
| Step 2 |
|---|
| To find f g we replace any occurrence of x in f with g, to yield |
| Final Answers |
|---|
| f g = , and the domain is . |