Difference between revisions of "005 Sample Final A, Question 2"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|1) The domain is <math>(0, \infty)</math>. The domain of <math>\frac{1}{x}</math> is <math>[0, \infty)</math>, but we have to remove zero from the domain since we cannot divide by 0.
 
|1) The domain is <math>(0, \infty)</math>. The domain of <math>\frac{1}{x}</math> is <math>[0, \infty)</math>, but we have to remove zero from the domain since we cannot divide by 0.
 
|-
 
|-
|2) <math>x^2 - x -2 = (x - 2)(x - 1)</math>
+
|2) <math>x^2 - x -2 = (x - 2)(x + 1)</math>
 +
|}
 +
 
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 +
|-
 +
|We start by factoring <math>x^2 - x - 2</math> into <math>(x - 2)(x + 1)</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 +
|-
 +
|Since we cannot divide by zero, and we cannot take the square root of a negative number, we use a sign chart to determine when <math>(x - 2)(x + 1) > 0</math>
 +
|-
 +
|<table border="1" cellspacing="0" cellpadding="6" align = "center">
 +
  <tr>
 +
    <td align = "center"><math> x:</math></td>
 +
    <td align = "center"><math> x<-1 </math></td>
 +
    <td align = "center"><math> x=-1 </math></td>
 +
    <td align = "center"><math> -1<x<5 </math></td>
 +
    <td align = "center"><math> x=5 </math></td>
 +
    <td align = "center"><math>x>5</math></td>
 +
  </tr>
 +
  <tr>
 +
    <td align = "center"><math> f'(x):</math></td>
 +
    <td align = "center"><math> (+) </math></td>
 +
    <td align = "center"><math> 0 </math></td>
 +
    <td align = "center"><math> (-) </math></td>
 +
    <td align = "center"><math> 0 </math></td>
 +
    <td align = "center"><math> (+)</math></td>
 +
  </tr>
 +
</table>
 
|}
 
|}

Revision as of 10:42, 6 May 2015

Question Find the domain of the following function. Your answer should be in interval notation

Foundations:
1) What is the domain of ?
2) How can we factor ?
Answer:
1) The domain is . The domain of is , but we have to remove zero from the domain since we cannot divide by 0.
2)


Step 1:
We start by factoring into
Step 1:
Since we cannot divide by zero, and we cannot take the square root of a negative number, we use a sign chart to determine when