Difference between revisions of "Pages For External Wiki"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "=Precalculus= Presented below is the template for one of the sample questions Parker presented during 302. 2. Question Statement {| class="mw-collapsible mw-collapsed" ! Fo...")
 
(Replaced content with "=Precalculus= =Calculus=")
Line 1: Line 1:
 
=Precalculus=
 
=Precalculus=
 
Presented below is the template for one of the sample questions Parker presented during 302.
 
 
2. Question Statement
 
 
{| class="mw-collapsible mw-collapsed"
 
! Foundations
 
|-
 
|'''The foundations:'''
 
|-
 
| Provide an short explanation about the prerequisite material required to complete this problem.
 
|}
 
 
 
Solution:
 
 
{| class = "mw-collapsible mw-collapsed"
 
! Step 1:
 
|-
 
|Provide as many steps as necessary to complete the problem.
 
|-
 
|The steps should split the solution based on the foundation topics
 
|}
 
 
{| class = "mw-collapsible mw-collapsed"
 
! Step 2:
 
|-
 
|Additional step provided to make the template longer
 
|}
 
 
 
 
'''Example'''
 
 
2. Find the domain of the following function. Your answer should use interval notation.
 
f(x) = <math style="vertical-align:-17%;">\displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
 
{| class="mw-collapsible mw-collapsed"
 
! Foundations
 
|-
 
|'''The foundations:'''
 
|-
 
| What is the domain of g(x) = <math style="vertical-align:-17%;">\frac{1}{x}</math>?
 
|-
 
|The function is undefined if the denominator is zero, so x <math>\neq </math>0.
 
|-
 
|Rewriting"x <math>\neq </math>0" in interval notation( <math>-\infty</math>, 0) <math>\cup</math>(0, <math>\infty</math>)
 
|-
 
|What is the domain of h(x) = <math>\sqrt{x}</math>?
 
|-
 
|The function is undefined if wwe have a negative number inside the square root, so x <math>\ge</math> 0
 
|}
 
 
 
Solution:
 
 
{| class = "mw-collapsible mw-collapsed"
 
! Step 1:
 
|-
 
|Factor <math style="vertical-align:-17%;">x^2 - x - 2</math>
 
|-
 
|<math style="vertical-align:-17%;">x^2 - x - 2 = (x + 1) (x - 2)</math>
 
|-
 
| So we can rewrite f(x) as f(x) = <math style="vertical-align:-17%;">\displaystyle{\frac{1}{\sqrt{(x+1)(x-2)}}}</math>
 
|}
 
 
{|class = "mw-collapsible mw-collapsed"
 
! Step 2:
 
|-
 
|When does the denominator of f(x) = 0?
 
|-
 
|<math>sqrt{(x + 1)(x - 2)} = 0</math>
 
|-
 
|(x + 1)(x - 2) = 0
 
|-
 
|(x + 1) = 0 or (x - 2) = 0
 
|-
 
|x = -1 or x = 2
 
|-
 
|So, since the function is undefiend when the denominator is zero, x <math>\neq</math> -1 and x <math>\neq</math> 2
 
|}
 
 
{|class = "mw-collapsible mw-collapsed"
 
! Step 3:
 
|-
 
|What is the domain of h(x) = <math style="vertical-align:-17%;">\sqrt{(x + 1)(x - 2)}</math>
 
|-
 
|critical points: x = -1, x = 2
 
|-
 
|Test points:
 
|-
 
|x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
 
|-
 
|x = 0: (0 + 1)(0 - 2) = -2 < 0
 
|-
 
|x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
 
|-
 
|So the domain of h(x) is (<math>-\infty</math>, -1] <math>\cup</math> [2, <math>\infty</math>)
 
|}
 
 
{|class = "mw-collapsible mw-collapsed"
 
! Step 4:
 
|-
 
|Take the intersection (i.3. common points) of Steps 2 and 3. ( <math>- \infty</math>, -1) <math>\cup</math> (2, <math>\infty</math>)
 
|}
 
  
  
 
=Calculus=
 
=Calculus=

Revision as of 17:13, 16 March 2015

Precalculus

Calculus