Difference between revisions of "004 Sample Final A, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Simplify. <math>\frac{1}{3x + 6} - \frac{x}{x^2-4} + \frac{3}{x-2}</math>") |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<span class="exam"> Simplify. <math>\frac{1}{3x + 6} - \frac{x}{x^2-4} + \frac{3}{x-2}</math> | <span class="exam"> Simplify. <math>\frac{1}{3x + 6} - \frac{x}{x^2-4} + \frac{3}{x-2}</math> | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Foundations | ||
+ | |- | ||
+ | |How do you simplify <math>\frac{1}{x}+\frac{1}{x+2}</math> into one fraction? | ||
+ | |- | ||
+ | |Answer: | ||
+ | |- | ||
+ | |You need to get a common denominator. The common denominator is <math>x(x+2)</math>. So, | ||
+ | |- | ||
+ | |<math>\frac{1}{x}+\frac{1}{x+2}=\frac{x+2}{x(x+2)}+\frac{x}{x(x+2)}=\frac{2x+2}{x(x+2)}</math>. | ||
+ | |} | ||
+ | |||
+ | |||
+ | Solution: | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 1: | ||
+ | |- | ||
+ | |If we factor the denominators, we have <math>\frac{1}{3(x+2)} - \frac{x}{(x+2)(x-2)} + \frac{3}{x-2}</math>. | ||
+ | |- | ||
+ | |So, the common denominator of these three fractions is <math>3(x-2)(x+2)</math>. | ||
+ | |} | ||
+ | |||
+ | {|class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
+ | |- | ||
+ | |So, we have <math>\frac{1}{3(x+2)} - \frac{x}{(x+2)(x-2)} + \frac{3}{x-2}=\frac{x-2}{3(x-2)(x+2)} - \frac{3x}{3(x+2)(x-2)} + \frac{3(3)(x+2)}{3(x+2)(x-2)}</math>. | ||
+ | |} | ||
+ | |||
+ | {|class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
+ | |- | ||
+ | |Now, combining into one fraction, we have <math>\frac{x-2-3x+3(3)(x+2)}{3(x-2)(x+2)}=\frac{7x+16}{3(x-2)(x+2)} </math> | ||
+ | |} | ||
+ | |||
+ | {|class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
+ | |- | ||
+ | |<math>\frac{7x+16}{3(x-2)(x+2)} </math> | ||
+ | |} | ||
+ | |||
+ | [[004 Sample Final A|<u>'''Return to Sample Exam</u>''']] |
Latest revision as of 15:58, 4 May 2015
Simplify.
Foundations |
---|
How do you simplify into one fraction? |
Answer: |
You need to get a common denominator. The common denominator is . So, |
. |
Solution:
Step 1: |
---|
If we factor the denominators, we have . |
So, the common denominator of these three fractions is . |
Step 2: |
---|
So, we have . |
Step 3: |
---|
Now, combining into one fraction, we have |
Final Answer: |
---|