Difference between revisions of "004 Sample Final A, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
Line 3: Line 3:
 
! Foundations
 
! Foundations
 
|-
 
|-
|  
+
|1) What is the solution to <math>|x|\geq 3</math>?
 +
|-
 +
|2) How do you write <math>x\geq 2</math> in interval notation?
 
|-
 
|-
 
|Answer:
 
|Answer:
 
|-
 
|-
|
+
|1) The solution is <math>x\geq 3</math> or <math>x\leq -3</math>.
 +
|-
 +
|2) <math>[2,\infty)</math>
 
|}
 
|}
  
Line 16: Line 20:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
|The inequality above means <math>4x+7\geq 5</math> or <math> 4x+7\leq -5</math>.
|-
 
|
 
 
|}
 
|}
  
Line 24: Line 26:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|
+
|Subtracting 7 from both sides of the inequalities, we get <math>4x\geq -2</math> or <math>4x\leq -12</math>.
 
|}
 
|}
  
Line 30: Line 32:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|
+
|Dividing both sides of the inequalities by 4, we have <math>x\geq -\frac{1}{2}</math> or <math>x\leq -3</math>.
|-
 
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 42: Line 38:
 
! Step 4:
 
! Step 4:
 
|-
 
|-
|
+
|Using interval notation, the solution is <math>(-\infty,-3]\cup [-\frac{1}{2},\infty)</math>.
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 52: Line 44:
 
! Final Answer:
 
! Final Answer:
 
|-
 
|-
|
+
|<math>(-\infty,-3]\cup [-\frac{1}{2},\infty)</math>
 
|}
 
|}
  
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]

Latest revision as of 15:27, 4 May 2015

Solve. Provide your solution in interval notation.     

Foundations
1) What is the solution to ?
2) How do you write in interval notation?
Answer:
1) The solution is or .
2)


Solution:

Step 1:
The inequality above means or .
Step 2:
Subtracting 7 from both sides of the inequalities, we get or .
Step 3:
Dividing both sides of the inequalities by 4, we have or .
Step 4:
Using interval notation, the solution is .
Final Answer:

Return to Sample Exam