Difference between revisions of "004 Sample Final A, Problem 13"

From Grad Wiki
Jump to navigation Jump to search
 
Line 28: Line 28:
 
|Using the above formula, we have  
 
|Using the above formula, we have  
 
|-
 
|-
|<math>\displaystyle{\sum_{n = 1}^6 4\left((\frac{1}{2}\right))^n}=S_6=\frac{2(1-\frac{1}{2}^6)}{1-\frac{1}{2}}</math>
+
|<math>\displaystyle{\sum_{n = 1}^6 4\left(\frac{1}{2}\right)^n}=S_6=\frac{2(1-(\frac{1}{2})^6)}{(1-\frac{1}{2})}</math>
 
|}
 
|}
  
Line 34: Line 34:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|
+
|If we simplify, we get
 
|-
 
|-
|
+
|<math>\displaystyle{\sum_{n = 1}^6 4\left(\frac{1}{2}\right)^n}=\frac{2(1-\frac{1}{64})}{\frac{1}{2}}=4\frac{63}{64}=\frac{63}{16}</math>.
|-
 
|
 
|-
 
|
 
|}
 
 
 
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 4:
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 56: Line 42:
 
! Final Answer:
 
! Final Answer:
 
|-
 
|-
|
+
|<math>\frac{63}{16}</math>
 
|}
 
|}
  
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]

Latest revision as of 15:05, 4 May 2015

Compute

Foundations
What is the formula for the sum of the first n terms of a geometric sequence?
Answer:
The sum of the first n terms of a geometric sequence is
where is the common ratio and is the first term of the geometric sequence.


Solution:

Step 1:
The common ratio for this geometric sequence is .
The first term of the geometric sequence is .
Step 2:
Using the above formula, we have
Step 3:
If we simplify, we get
.
Final Answer:

Return to Sample Exam