Difference between revisions of "004 Sample Final A, Problem 19"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
!Foundations
 
!Foundations
 
|-
 
|-
|
+
|How do we remove logs from an equation?
|-
 
|
 
 
|-
 
|-
 
|Answer:
 
|Answer:
 
|-
 
|-
|
+
|The definition of the logarithm tells us that if <math>\log_6(x)=y</math>, then <math>6^y=x</math>.
 
|-
 
|-
 
|
 
|
Line 19: Line 17:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
|By the definition of the logarithm, <math>\log_6 \frac{1}{36} = x</math> means <math>6^x=\frac{1}{36}</math>.
 
|}
 
|}
  
Line 25: Line 23:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|
+
|Now, we can solve for <math>x</math>. Since <math>6^x=\frac{1}{36}</math>,
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 3:
 
 
|-
 
|-
|
+
|we must have <math>x=-2</math>.
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 4:
 
|-
 
|
 
 
|}
 
|}
  
Line 43: Line 31:
 
! Final Answer:
 
! Final Answer:
 
|-
 
|-
|  
+
| <math>x=-2</math>
 
|}
 
|}
  
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]

Latest revision as of 10:17, 29 April 2015

Solve for x:     

Foundations
How do we remove logs from an equation?
Answer:
The definition of the logarithm tells us that if , then .

Solution:

Step 1:
By the definition of the logarithm, means .
Step 2:
Now, we can solve for . Since ,
we must have .
Final Answer:

Return to Sample Exam