Difference between revisions of "004 Sample Final A, Problem 19"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Solve for ''x'':      <math>\log_6 \frac{1}{36} = x</math>")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> Solve for ''x'': &nbsp;&nbsp;&nbsp;&nbsp; <math>\log_6 \frac{1}{36} = x</math>
 
<span class="exam"> Solve for ''x'': &nbsp;&nbsp;&nbsp;&nbsp; <math>\log_6 \frac{1}{36} = x</math>
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Foundations
 +
|-
 +
|How do we remove logs from an equation?
 +
|-
 +
|Answer:
 +
|-
 +
|The definition of the logarithm tells us that if <math>\log_6(x)=y</math>, then <math>6^y=x</math>.
 +
|-
 +
|
 +
|}
 +
 +
Solution:
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 +
|-
 +
|By the definition of the logarithm, <math>\log_6 \frac{1}{36} = x</math> means <math>6^x=\frac{1}{36}</math>.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 +
|-
 +
|Now, we can solve for <math>x</math>. Since <math>6^x=\frac{1}{36}</math>,
 +
|-
 +
|we must have <math>x=-2</math>.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
| <math>x=-2</math>
 +
|}
 +
 +
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]

Latest revision as of 10:17, 29 April 2015

Solve for x:     

Foundations
How do we remove logs from an equation?
Answer:
The definition of the logarithm tells us that if , then .

Solution:

Step 1:
By the definition of the logarithm, means .
Step 2:
Now, we can solve for . Since ,
we must have .
Final Answer:

Return to Sample Exam