Difference between revisions of "004 Sample Final A, Problem 11"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
 
!Foundations
 
!Foundations
 
|-
 
|-
|
+
|1) <math> f(x+h)=?</math>
 
|-
 
|-
|
+
|2) How do you eliminate the <math>h</math> in the denominator?
 
|-
 
|-
 
|Answer:
 
|Answer:
 
|-
 
|-
|
+
|1) We have <math>f(x+h)=\sqrt{x+h-3}</math>
 
|-
 
|-
|
+
|2) The difference quotient is <math>\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>. To eliminate the <math>h</math> in the denominator,
 +
|-
 +
|you need to multiply the numerator and denominator by <math>\sqrt{x+h-3}+\sqrt{x-3}</math> (the conjugate).
 
|}
 
|}
  
Line 20: Line 22:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
|The difference quotient is <math>\frac{f(x + h) - f(x)}{h}=\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>.
 
|}
 
|}
  
Line 26: Line 28:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|
+
|Multiplying the numerator and denominator by <math>\sqrt{x+h-3}+\sqrt{x-3}</math>, we get
 +
|-
 +
|<math>\frac{f(x + h) - f(x)}{h}=\frac{x+h-3-(x-3)}{h(\sqrt{x+h-3}+\sqrt{x-3})} </math>
 
|}
 
|}
  
Line 32: Line 36:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|
+
|Now, simplifying the numerator, we get
 
|-  
 
|-  
|
+
|<math>\frac{f(x + h) - f(x)}{h}=\frac{h}{h(\sqrt{x+h-3}+\sqrt{x-3})} </math>. Now, we can cancel the <math>h</math> in the denominator.
 +
|-
 +
|Thus, <math>\frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} </math>.
 
|}
 
|}
  
Line 40: Line 46:
 
! Final Answer:
 
! Final Answer:
 
|-
 
|-
|
+
|<math>\frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} </math>
 
|}
 
|}
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]

Latest revision as of 21:10, 28 April 2015

Find and simplify the difference quotient for

Foundations
1)
2) How do you eliminate the in the denominator?
Answer:
1) We have
2) The difference quotient is . To eliminate the in the denominator,
you need to multiply the numerator and denominator by (the conjugate).

Solution:

Step 1:
The difference quotient is .
Step 2:
Multiplying the numerator and denominator by , we get
Step 3:
Now, simplifying the numerator, we get
. Now, we can cancel the in the denominator.
Thus, .
Final Answer:

Return to Sample Exam