Difference between revisions of "004 Sample Final A, Problem 11"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Find and simplify the difference quotient <math>\frac{f(x + h) - f(x)}{h}</math> for <math>f(x) = \sqrt{x - 3}</math>") |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<span class="exam"> Find and simplify the difference quotient <math>\frac{f(x + h) - f(x)}{h}</math> for <math>f(x) = \sqrt{x - 3}</math> | <span class="exam"> Find and simplify the difference quotient <math>\frac{f(x + h) - f(x)}{h}</math> for <math>f(x) = \sqrt{x - 3}</math> | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Foundations | ||
+ | |- | ||
+ | |1) <math> f(x+h)=?</math> | ||
+ | |- | ||
+ | |2) How do you eliminate the <math>h</math> in the denominator? | ||
+ | |- | ||
+ | |Answer: | ||
+ | |- | ||
+ | |1) We have <math>f(x+h)=\sqrt{x+h-3}</math> | ||
+ | |- | ||
+ | |2) The difference quotient is <math>\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>. To eliminate the <math>h</math> in the denominator, | ||
+ | |- | ||
+ | |you need to multiply the numerator and denominator by <math>\sqrt{x+h-3}+\sqrt{x-3}</math> (the conjugate). | ||
+ | |} | ||
+ | |||
+ | Solution: | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 1: | ||
+ | |- | ||
+ | |The difference quotient is <math>\frac{f(x + h) - f(x)}{h}=\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
+ | |- | ||
+ | |Multiplying the numerator and denominator by <math>\sqrt{x+h-3}+\sqrt{x-3}</math>, we get | ||
+ | |- | ||
+ | |<math>\frac{f(x + h) - f(x)}{h}=\frac{x+h-3-(x-3)}{h(\sqrt{x+h-3}+\sqrt{x-3})} </math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
+ | |- | ||
+ | |Now, simplifying the numerator, we get | ||
+ | |- | ||
+ | |<math>\frac{f(x + h) - f(x)}{h}=\frac{h}{h(\sqrt{x+h-3}+\sqrt{x-3})} </math>. Now, we can cancel the <math>h</math> in the denominator. | ||
+ | |- | ||
+ | |Thus, <math>\frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} </math>. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
+ | |- | ||
+ | |<math>\frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} </math> | ||
+ | |} | ||
+ | [[004 Sample Final A|<u>'''Return to Sample Exam</u>''']] |
Latest revision as of 21:10, 28 April 2015
Find and simplify the difference quotient for
Foundations |
---|
1) |
2) How do you eliminate the in the denominator? |
Answer: |
1) We have |
2) The difference quotient is . To eliminate the in the denominator, |
you need to multiply the numerator and denominator by (the conjugate). |
Solution:
Step 1: |
---|
The difference quotient is . |
Step 2: |
---|
Multiplying the numerator and denominator by , we get |
Step 3: |
---|
Now, simplifying the numerator, we get |
. Now, we can cancel the in the denominator. |
Thus, . |
Final Answer: |
---|