Difference between revisions of "004 Sample Final A, Problem 11"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Find and simplify the difference quotient <math>\frac{f(x + h) - f(x)}{h}</math> for <math>f(x) = \sqrt{x - 3}</math>") |
Kayla Murray (talk | contribs) |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
<span class="exam"> Find and simplify the difference quotient <math>\frac{f(x + h) - f(x)}{h}</math> for <math>f(x) = \sqrt{x - 3}</math> | <span class="exam"> Find and simplify the difference quotient <math>\frac{f(x + h) - f(x)}{h}</math> for <math>f(x) = \sqrt{x - 3}</math> | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Foundations | ||
| + | |- | ||
| + | |1) <math> f(x+h)=?</math> | ||
| + | |- | ||
| + | |2) How do you eliminate the <math>h</math> in the denominator? | ||
| + | |- | ||
| + | |Answer: | ||
| + | |- | ||
| + | |1) We have <math>f(x+h)=\sqrt{x+h-3}</math> | ||
| + | |- | ||
| + | |2) The difference quotient is <math>\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>. To eliminate the <math>h</math> in the denominator, | ||
| + | |- | ||
| + | |you need to multiply the numerator and denominator by <math>\sqrt{x+h-3}+\sqrt{x-3}</math> (the conjugate). | ||
| + | |} | ||
| + | |||
| + | Solution: | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Step 1: | ||
| + | |- | ||
| + | |The difference quotient is <math>\frac{f(x + h) - f(x)}{h}=\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>. | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Step 2: | ||
| + | |- | ||
| + | |Multiplying the numerator and denominator by <math>\sqrt{x+h-3}+\sqrt{x-3}</math>, we get | ||
| + | |- | ||
| + | |<math>\frac{f(x + h) - f(x)}{h}=\frac{x+h-3-(x-3)}{h(\sqrt{x+h-3}+\sqrt{x-3})} </math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Step 3: | ||
| + | |- | ||
| + | |Now, simplifying the numerator, we get | ||
| + | |- | ||
| + | |<math>\frac{f(x + h) - f(x)}{h}=\frac{h}{h(\sqrt{x+h-3}+\sqrt{x-3})} </math>. Now, we can cancel the <math>h</math> in the denominator. | ||
| + | |- | ||
| + | |Thus, <math>\frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} </math>. | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Final Answer: | ||
| + | |- | ||
| + | |<math>\frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} </math> | ||
| + | |} | ||
| + | [[004 Sample Final A|<u>'''Return to Sample Exam</u>''']] | ||
Latest revision as of 20:10, 28 April 2015
Find and simplify the difference quotient for
| Foundations |
|---|
| 1) |
| 2) How do you eliminate the in the denominator? |
| Answer: |
| 1) We have |
| 2) The difference quotient is . To eliminate the in the denominator, |
| you need to multiply the numerator and denominator by (the conjugate). |
Solution:
| Step 1: |
|---|
| The difference quotient is . |
| Step 2: |
|---|
| Multiplying the numerator and denominator by , we get |
| Step 3: |
|---|
| Now, simplifying the numerator, we get |
| . Now, we can cancel the in the denominator. |
| Thus, . |
| Final Answer: |
|---|