Difference between revisions of "009C Sample Midterm 1, Problem 4 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Determine the convergence or divergence of the following series. <span class="exam"> Be sure to justify your answers! ::<math>\sum_{n=1}^\infty \frac{1}{n...")
 
 
Line 4: Line 4:
  
 
::<math>\sum_{n=1}^\infty \frac{1}{n^23^n}</math>
 
::<math>\sum_{n=1}^\infty \frac{1}{n^23^n}</math>
 
+
<hr>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Foundations: &nbsp;  
+
!Background Information: &nbsp;  
 
|-
 
|-
 
|'''Direct Comparison Test'''
 
|'''Direct Comparison Test'''

Latest revision as of 14:18, 5 January 2018

Determine the convergence or divergence of the following series.

Be sure to justify your answers!


Background Information:  
Direct Comparison Test
        Let    and    be positive sequences where  
        for all    for some  
        1. If    converges, then    converges.
        2. If    diverges, then    diverges.


Solution:

Step 1:  
First, we note that
       
for all  
This means that we can use a comparison test on this series.
Let  
Step 2:  
Let  
We want to compare the series in this problem with
       
This is a  -series with  
Hence,    converges.
Step 3:  
Also, we have    since
       
for all  
Therefore, the series    converges
by the Direct Comparison Test.


Final Answer:  
        converges (by the Direct Comparison Test)

Return to Sample Exam