Difference between revisions of "009C Sample Midterm 1, Problem 2 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the infinite series  <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> <span class="exam">(a) Find an expression f...")
 
 
Line 4: Line 4:
  
 
<span class="exam">(b) Compute &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
 
<span class="exam">(b) Compute &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
 
+
<hr>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Foundations: &nbsp;  
+
!Background Information: &nbsp;  
 
|-
 
|-
|The &nbsp;<math style="vertical-align: 0px">n</math>th partial sum, &nbsp;<math style="vertical-align: -3px">s_n</math>&nbsp; for a series &nbsp;<math>\sum_{n=1}^\infty a_n </math>&nbsp; is defined as
+
|The &nbsp;<math style="vertical-align: 0px">n</math>th partial sum, &nbsp;<math style="vertical-align: -3px">s_n,</math>&nbsp; for a series &nbsp;<math>\sum_{n=1}^\infty a_n </math>&nbsp; is defined as
 
|-
 
|-
 
|
 
|

Latest revision as of 14:15, 5 January 2018

Consider the infinite series  

(a) Find an expression for the  th partial sum    of the series.

(b) Compute  


Background Information:  
The  th partial sum,    for a series    is defined as

       


Solution:

(a)

Step 1:  
We need to find a pattern for the partial sums in order to find a formula.
We start by calculating    We have
       
Step 2:  
Next, we calculate    and    We have
       
and
       
Step 3:  
If we look at    and    we notice a pattern.
From this pattern, we get the formula
       

(b)

Step 1:  
From Part (a), we have
       
Step 2:  
We now calculate  
We get
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam