Difference between revisions of "007A Sample Midterm 3, Problem 4 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Consider the circle  <math style="vertical-align: -4px">x^2+y^2=25.</math> <span class="exam">(a)  Find  <math style="vertical-align: -14px...")
 
 
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; It would be &nbsp;<math style="vertical-align: -13px">2y\frac{dy}{dx}</math>&nbsp; by the Product Rule.
+
&nbsp; &nbsp; &nbsp; &nbsp; It would be &nbsp;<math style="vertical-align: -13px">2y\cdot \frac{dy}{dx}</math>&nbsp; by the Chain Rule.
 
|-
 
|-
 
|'''2.''' What two pieces of information do you need to write the equation of a line?
 
|'''2.''' What two pieces of information do you need to write the equation of a line?
Line 35: Line 35:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; <math>2x+2y\frac{dy}{dx}=0.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>2x+2y\cdot\frac{dy}{dx}=0.</math>
 
|}
 
|}
  
Line 46: Line 46:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>2y\frac{dy}{dx}=-2x.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>2y\cdot\frac{dy}{dx}=-2x.</math>
 
|-
 
|-
 
|We solve to get  
 
|We solve to get  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -17px">\frac{dy}{dx}=\frac{-x}{y}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -17px">\frac{dy}{dx}=-\frac{x}{y}.</math>
 
|}
 
|}
  
Line 66: Line 66:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{m} & = & \displaystyle{\frac{-4}{-3}}\\
+
\displaystyle{m} & = & \displaystyle{-\bigg(\frac{4}{-3}\bigg)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{4}{3}.}
 
& = & \displaystyle{\frac{4}{3}.}
Line 89: Line 89:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math>\frac{dy}{dx}=\frac{-x}{y}</math>
+
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math>\frac{dy}{dx}=-\frac{x}{y}</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math>y\,=\,\frac{4}{3}(x-4)-3</math>
 
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math>y\,=\,\frac{4}{3}(x-4)-3</math>
 
|}
 
|}
 
[[007A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[007A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 12:06, 5 January 2018

Consider the circle  

(a)  Find  

(b)  Find the equation of the tangent line at the point  


Background Information:  
1. What is the result of implicit differentiation of  

        It would be    by the Chain Rule.

2. What two pieces of information do you need to write the equation of a line?

        You need the slope of the line and a point on the line.

3. What is the slope of the tangent line of a curve?

        The slope is  


Solution:

(a)

Step 1:  
Using implicit differentiation on the equation    we get

       

Step 2:  
Now, solve for   
So, we have

       

We solve to get
       

(b)

Step 1:  
First, we find the slope of the tangent line at the point  
We plug    into the formula for    we found in part (a).
So, we get

       

Step 2:  
Now, we have the slope of the tangent line at    and a point.
Thus, we can write the equation of the line.
So, the equation of the tangent line at    is

       


Final Answer:  
    (a)   
    (b)   

Return to Sample Exam