Difference between revisions of "007A Sample Midterm 3, Problem 1 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 96: | Line 96: | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(4x)}{\cos(4x)} \frac{1}{\sin(6x)}}\\ | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{\cos(4x)}\cdot \frac{1}{\sin(6x)}\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{4}{6} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\ | + | & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{4}{6} \cdot \frac{\sin(4x)}{4x}\cdot \frac{6x}{\sin(6x)}\cdot\frac{1}{\cos(4x)}\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}.} | + | & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{4x}\cdot \frac{6x}{\sin(6x)}\cdot \frac{1}{\cos(4x)}\bigg].} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 111: | Line 111: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\ | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{4x}\cdot\frac{6x}{\sin(6x)}\cdot\frac{1}{\cos(4x)}\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\ | + | & = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\cdot\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\cdot\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{4}{6} (1)(1)(1)}\\ | + | & = & \displaystyle{\frac{4}{6} \cdot (1)\cdot (1)\cdot(1)}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{2}{3}.} | & = & \displaystyle{\frac{2}{3}.} |
Latest revision as of 11:55, 5 January 2018
Find the following limits:
(a) If find
(b) Evaluate
(c) Find
Background Information: |
---|
1. If we have |
2. Recall |
Solution:
(a)
Step 1: |
---|
First, we have |
Therefore, |
Step 2: |
---|
Since we have |
|
Multiplying both sides by we get |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
|
(c)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |