Difference between revisions of "007A Sample Midterm 3, Problem 1 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
 
Line 96: Line 96:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(4x)}{\cos(4x)} \frac{1}{\sin(6x)}}\\
+
\displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{\cos(4x)}\cdot \frac{1}{\sin(6x)}\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{4}{6} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\
+
& = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{4}{6} \cdot \frac{\sin(4x)}{4x}\cdot \frac{6x}{\sin(6x)}\cdot\frac{1}{\cos(4x)}\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}.}
+
& = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{4x}\cdot \frac{6x}{\sin(6x)}\cdot \frac{1}{\cos(4x)}\bigg].}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 111: Line 111:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\
+
\displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{4x}\cdot\frac{6x}{\sin(6x)}\cdot\frac{1}{\cos(4x)}\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\
+
& = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\cdot\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\cdot\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{4}{6} (1)(1)(1)}\\
+
& = & \displaystyle{\frac{4}{6} \cdot (1)\cdot (1)\cdot(1)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{2}{3}.}
 
& = & \displaystyle{\frac{2}{3}.}

Latest revision as of 11:55, 5 January 2018

Find the following limits:

(a) If    find  

(b) Evaluate  

(c) Find  


Background Information:  
1. If    we have
       
2. Recall
       


Solution:

(a)

Step 1:  
First, we have
       
Therefore,
       
Step 2:  
Since    we have

       

Multiplying both sides by    we get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam