Difference between revisions of "007A Sample Midterm 2, Problem 1 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
 
Line 44: Line 44:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\
+
\displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \bigg[\frac{(\sqrt{x^2+12}-4)}{(x-2)}\cdot \frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}\bigg]}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\
 
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\
Line 67: Line 67:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{x} \frac{x}{\sin(7x)}}\\
+
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{x} \cdot \frac{x}{\sin(7x)}\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{3}{7} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
+
& = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{3}{7} \cdot \frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}.}
+
& = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg].}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 82: Line 82:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
+
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\
+
& = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\cdot \bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{3}{7} (1)(1)}\\
+
& = & \displaystyle{\frac{3}{7} \cdot (1)\cdot (1)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{3}{7}.}
 
& = & \displaystyle{\frac{3}{7}.}

Latest revision as of 11:30, 5 January 2018

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  


Background Information:  
1.  
2. Squeeze Theorem
       Let    and    be functions on an open interval    containing   
       such that for all    in  
       If    then  


Solution:

(a)

Step 1:  
We begin by noticing that if we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
First, recall that
for all  
Then, for all  
Hence, for all  
Step 2:  
Now, notice
and
Step 3:  
Since
we have
by the Squeeze Theorem.


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam