Difference between revisions of "007A Sample Midterm 2, Problem 1 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 44: | Line 44: | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\ | + | \displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \bigg[\frac{(\sqrt{x^2+12}-4)}{(x-2)}\cdot \frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}\bigg]}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\ | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\ | ||
| Line 67: | Line 67: | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{x} \frac{x}{\sin(7x)}}\\ | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{x} \cdot \frac{x}{\sin(7x)}\bigg]}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{3}{7} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\ | + | & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{3}{7} \cdot \frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg]}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}.} | + | & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg].} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 82: | Line 82: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\ | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg]}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\ | + | & = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\cdot \bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{3}{7} (1)(1)}\\ | + | & = & \displaystyle{\frac{3}{7} \cdot (1)\cdot (1)}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{3}{7}.} | & = & \displaystyle{\frac{3}{7}.} | ||
Latest revision as of 10:30, 5 January 2018
Evaluate the following limits.
(a) Find
(b) Find
(c) Evaluate
| Background Information: |
|---|
| 1. |
| 2. Squeeze Theorem |
| Let and be functions on an open interval containing |
| such that for all in |
| If then |
Solution:
(a)
| Step 1: |
|---|
| We begin by noticing that if we plug in into |
| we get |
| Step 2: |
|---|
| Now, we multiply the numerator and denominator by the conjugate of the numerator. |
| Hence, we have |
(b)
| Step 1: |
|---|
| First, we write |
| Step 2: |
|---|
| Now, we have |
|
|
(c)
| Step 1: |
|---|
| First, recall that |
|
|
| for all |
| Then, for all |
|
|
| Hence, for all |
|
|
| Step 2: |
|---|
| Now, notice |
|
|
| and |
|
|
| Step 3: |
|---|
| Since |
|
|
| we have |
|
|
| by the Squeeze Theorem. |
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |