Difference between revisions of "007A Sample Midterm 2, Problem 1 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 44: | Line 44: | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\ | + | \displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \bigg[\frac{(\sqrt{x^2+12}-4)}{(x-2)}\cdot \frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}\bigg]}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\ | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\ | ||
Line 67: | Line 67: | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{x} \frac{x}{\sin(7x)}}\\ | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{x} \cdot \frac{x}{\sin(7x)}\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{3}{7} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\ | + | & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{3}{7} \cdot \frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}.} | + | & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg].} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 82: | Line 82: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\ | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \bigg[\frac{\sin(3x)}{3x}\cdot \frac{7x}{\sin(7x)}\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\ | + | & = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\cdot \bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{3}{7} (1)(1)}\\ | + | & = & \displaystyle{\frac{3}{7} \cdot (1)\cdot (1)}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{3}{7}.} | & = & \displaystyle{\frac{3}{7}.} |
Latest revision as of 11:30, 5 January 2018
Evaluate the following limits.
(a) Find
(b) Find
(c) Evaluate
Background Information: |
---|
1. |
2. Squeeze Theorem |
Let and be functions on an open interval containing |
such that for all in |
If then |
Solution:
(a)
Step 1: |
---|
We begin by noticing that if we plug in into |
we get |
Step 2: |
---|
Now, we multiply the numerator and denominator by the conjugate of the numerator. |
Hence, we have |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
|
(c)
Step 1: |
---|
First, recall that |
|
for all |
Then, for all |
|
Hence, for all |
|
Step 2: |
---|
Now, notice |
|
and |
|
Step 3: |
---|
Since |
|
we have |
|
by the Squeeze Theorem. |
Final Answer: |
---|
(a) |
(b) |
(c) |