Difference between revisions of "007A Sample Midterm 1, Problem 2 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the following function  <math style="vertical-align: -5px"> f:</math> ::<math>f(x) = \left\{ \begin{array}{lr} x^2 & \text{if }x...")
 
 
Line 54: Line 54:
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^-} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^-} x^2}\\
 
\displaystyle{\lim_{x\rightarrow 1^-} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^-} x^2}\\
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} x^2}\\
 
 
&&\\
 
&&\\
 
& = & \displaystyle{1^2}\\
 
& = & \displaystyle{1^2}\\
Line 84: Line 82:
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^+} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^+} \sqrt{x}}\\
 
\displaystyle{\lim_{x\rightarrow 1^+} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^+} \sqrt{x}}\\
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} \sqrt{x}}\\
 
 
&&\\
 
&&\\
 
& = & \displaystyle{\sqrt{1}}\\
 
& = & \displaystyle{\sqrt{1}}\\

Latest revision as of 11:14, 5 January 2018

Consider the following function  

(a) Find  

(b) Find  

(c) Find  

(d) Is    continuous at    Briefly explain.


Foundations:  
1. If  
        then  
2.    is continuous at    if
       


Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of    that are smaller than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of    that are bigger than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
From (a) and (b), we have
       
and
       
Step 2:  
Since
       
we have
       

(d)

Step 1:  
From (c), we have
       
Also,
       
Step 2:  
Since
       
 is continuous at  


Final Answer:  
    (a)    
    (b)    
    (c)    
    (d)       is continuous at    since  

Return to Sample Exam