Difference between revisions of "009C Sample Final 3, Problem 10 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">A curve is described parametrically by ::<span class="exam"><math>x=t^2</math> ::<span class="exam"><math>y=t^3-t</math> <span class="exam">(a) Sketch the...")
 
 
Line 18: Line 18:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;The slope is &nbsp;<math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;The slope is &nbsp;<math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}.</math>
 
|}
 
|}
  
Line 42: Line 42:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{3t^2-1}{2t}.</math>
 
|}
 
|}
  
Line 54: Line 54:
 
|Plugging in &nbsp;<math style="vertical-align: -1px">t=0</math>&nbsp; into
 
|Plugging in &nbsp;<math style="vertical-align: -1px">t=0</math>&nbsp; into
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t},</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{3t^2-1}{2t},</math>
 
|-
 
|-
 
|we see that &nbsp;<math style="vertical-align: -14px">\frac{dy}{dx}</math>&nbsp; is undefined at &nbsp;<math style="vertical-align: -1px">t=0.</math>
 
|we see that &nbsp;<math style="vertical-align: -14px">\frac{dy}{dx}</math>&nbsp; is undefined at &nbsp;<math style="vertical-align: -1px">t=0.</math>

Latest revision as of 16:41, 3 December 2017

A curve is described parametrically by

(a) Sketch the curve for  

(b) Find the equation of the tangent line to the curve at the origin.


Background Information:  
1. What two pieces of information do you need to write the equation of a line?

       You need the slope of the line and a point on the line.

2. What is the slope of the tangent line of a parametric curve?

       The slope is  


Solution:

(a)  
 

(b)

Step 1:  
First, we need to find the slope of the tangent line.
Since     and     we have

       

Step 2:  
Now, the origin corresponds to    and  
This gives us two equations. When we solve for    we get  
Plugging in    into
       
we see that    is undefined at  
So, there is no tangent line at the origin.


Final Answer:  
    (a)    See above
    (b)    There is no tangent line at the origin.

Return to Sample Exam