Difference between revisions of "009C Sample Final 3"

From Grad Wiki
Jump to navigation Jump to search
 
(31 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
== [[009C_Sample Final 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[009C_Sample Final 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam"> Which of the following sequences <math>(a_n)_{n\ge 1}</math> converges? Which diverges? Give reasons for your answers!
+
<span class="exam"> Which of the following sequences &nbsp;<math style="vertical-align: -5px">(a_n)_{n\ge 1}</math>&nbsp; converges? Which diverges? Give reasons for your answers!
  
::<span class="exam">a)&nbsp; <math>a_n=\bigg(1+\frac{1}{2n}\bigg)^n</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -15px">a_n=\bigg(1+\frac{1}{2n}\bigg)^n</math>
  
::<span class="exam">b)&nbsp; <math>a_n=\cos(n\pi)\bigg(\frac{1+n}{n}\bigg)^n</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -15px">a_n=\cos(n\pi)\bigg(\frac{1+n}{n}\bigg)^n</math>
  
 
== [[009C_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> Consider the series
 
<span class="exam"> Consider the series
  
::::<math>\sum_{n=2}^\infty \frac{(-1)^n}{\sqrt{n}}.</math>
+
::<math>\sum_{n=2}^\infty \frac{(-1)^n}{\sqrt{n}}.</math>
  
::<span class="exam">a) Test if the series converges absolutely. Give reasons for your answer.
+
<span class="exam">(a) Test if the series converges absolutely. Give reasons for your answer.
  
::<span class="exam">b) Test if the series converges conditionally. Give reasons for your answer.
+
<span class="exam">(b) Test if the series converges conditionally. Give reasons for your answer.
  
 
== [[009C_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
<span class="exam">Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.
 
<span class="exam">Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.
  
::::<math>\sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}</math>
+
::<math>\sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}</math>
  
 
== [[009C_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
 
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
  
::<span class="exam">a) <math>\sum_{n=1}^{+\infty} \frac{n!}{(2n)!}</math>  
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^{\infty} \frac{n!}{(2n)!}</math>  
  
::<span class="exam">b) <math>\sum_{n=1}^{+\infty} (-1)^n\frac{1}{n+1}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{\infty} (-1)^n\frac{1}{n+1}</math>
  
 
== [[009C_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
<span class="exam"> Consider the function
 
<span class="exam"> Consider the function
  
::::<math>f(x)=e^{-\frac{1}{3}x}</math>
+
::<math>f(x)=e^{-\frac{1}{3}x}.</math>
  
::<span class="exam">a) Find a formula for the <math>n</math>th derivative <math>f^{(n)}(x)</math> of <math>f</math> and then find <math>f'(3).</math>
+
<span class="exam">(a) Find a formula for the &nbsp;<math>n</math>th derivative &nbsp;<math style="vertical-align: -5px">f^{(n)}(x)</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and then find &nbsp;<math style="vertical-align: -5px">f'(3).</math>
  
::<span class="exam">b) Find the Taylor series for <math>f(x)</math> at <math>x_0=3,</math> i.e. write <math>f(x)</math> in the form  
+
<span class="exam">(b) Find the Taylor series for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">x_0=3,</math>&nbsp; i.e. write &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; in the form  
  
::::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
+
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
  
 
== [[009C_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
<span class="exam"> Consider the power series  
 
<span class="exam"> Consider the power series  
  
::::<math>\sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1}</math>
+
::<math>\sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1}.</math>
  
::<span class="exam">a) Find the radius of convergence of the above power series.
+
<span class="exam">(a) Find the radius of convergence of the above power series.
  
::<span class="exam">b) Find the interval of convergence of the above power series.
+
<span class="exam">(b) Find the interval of convergence of the above power series.
  
::<span class="exam">c) Find the closed formula for the function <math>f(x)</math> to which the power series converges.
+
<span class="exam">(c) Find the closed formula for the function &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; to which the power series converges.
  
::<span class="exam">d) Does the series
+
<span class="exam">(d) Does the series
  
::::<math>\sum_{n=0}^\infty \frac{1}{(n+1)3^{n+1}}</math>
+
::<math>\sum_{n=0}^\infty \frac{1}{(n+1)3^{n+1}}</math>
  
::<span class="exam">converge? If so, find its sum.
+
<span class="exam">converge?
  
 
== [[009C_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
Line 64: Line 64:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
  
::::::<math>r=1+\cos^2(2\theta)</math>
+
::<math>r=1+\cos^2(2\theta).</math>
  
::<span class="exam">a) Show that the point with Cartesian coordinates <math>(x,y)=\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)</math> belongs to the curve.
+
<span class="exam">(a) Show that the point with Cartesian coordinates &nbsp;<math style="vertical-align: -15px">(x,y)=\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)</math>&nbsp; belongs to the curve.
  
::<span class="exam">b) Sketch the curve.  
+
<span class="exam">(b) Sketch the curve.  
  
::<span class="exam">c) In Cartesian coordinates, find the equation of the tangent line at <math>\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math>
+
<span class="exam">(c) In Cartesian coordinates, find the equation of the tangent line at &nbsp;<math style="vertical-align: -15px">\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math>
  
 
== [[009C_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
<span class="exam">A curve is given in polar coordinates by <math>r=4+3\sin \theta</math>
+
<span class="exam">A curve is given in polar coordinates by &nbsp;<math style="vertical-align: -2px">r=4+3\sin \theta.</math>
::::::<math>0\leq \theta \leq 2\pi</math>
 
  
::<span class="exam">a) Sketch the curve.
+
<span class="exam">(a) Sketch the curve.
  
::<span class="exam">b) Find the area enclosed by the curve.
+
<span class="exam">(b) Find the area enclosed by the curve.
  
 
== [[009C_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
<span class="exam">A wheel of radius 1 rolls along a straight line, say the <math>x</math>-axis. A point <math>P</math> is located halfway between the center of the wheel and the rim. As the wheel rolls, <math>P</math> traces a curve. Find parametric equations for the curve.
+
<span class="exam">A wheel of radius 1 rolls along a straight line, say the &nbsp;<math>x</math>-axis. A point &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; is located halfway between the center of the wheel and the rim; assume &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; starts at the point &nbsp;<math style="vertical-align: -15px">\bigg(0,\frac{1}{2}\bigg).</math>&nbsp; As the wheel rolls, &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; traces a curve. Find parametric equations for the curve.
  
 
== [[009C_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
== [[009C_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
  
<span class="exam">A curve is given in polar parametrically by  
+
<span class="exam">A curve is described parametrically by  
::::::<span class="exam"><math>x(t)=3\sin t</math>
+
::<span class="exam"><math>x=t^2</math>
::::::<span class="exam"><math>y(t)=4\cos t</math>
+
::<span class="exam"><math>y=t^3-t</math>
::::::<span class="exam"><math>0\leq t \leq 2\pi</math>
 
  
::<span class="exam">a) Sketch the curve.
+
<span class="exam">(a) Sketch the curve for &nbsp;<math style="vertical-align: -2px">-2\le t \le 2.</math>
  
::<span class="exam">b) Compute the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math>.
+
<span class="exam">(b) Find the equation of the tangent line to the curve at the origin.

Latest revision as of 16:35, 3 December 2017

This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Which of the following sequences    converges? Which diverges? Give reasons for your answers!

(a)  

(b)  

 Problem 2 

Consider the series

(a) Test if the series converges absolutely. Give reasons for your answer.

(b) Test if the series converges conditionally. Give reasons for your answer.

 Problem 3 

Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.

 Problem 4 

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  

 Problem 5 

Consider the function

(a) Find a formula for the  th derivative    of    and then find  

(b) Find the Taylor series for    at    i.e. write    in the form

 Problem 6 

Consider the power series

(a) Find the radius of convergence of the above power series.

(b) Find the interval of convergence of the above power series.

(c) Find the closed formula for the function    to which the power series converges.

(d) Does the series

converge?

 Problem 7 

A curve is given in polar coordinates by

(a) Show that the point with Cartesian coordinates    belongs to the curve.

(b) Sketch the curve.

(c) In Cartesian coordinates, find the equation of the tangent line at  

 Problem 8 

A curve is given in polar coordinates by  

(a) Sketch the curve.

(b) Find the area enclosed by the curve.

 Problem 9 

A wheel of radius 1 rolls along a straight line, say the  -axis. A point    is located halfway between the center of the wheel and the rim; assume    starts at the point    As the wheel rolls,    traces a curve. Find parametric equations for the curve.

 Problem 10 

A curve is described parametrically by

(a) Sketch the curve for  

(b) Find the equation of the tangent line to the curve at the origin.