Difference between revisions of "009C Sample Final 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">A curve is given in polar coordinates by &nbsp;<math style="vertical-align: -2px">r=4+3\sin \theta</math>
+
<span class="exam">A curve is given in polar coordinates by &nbsp;<math style="vertical-align: -2px">r=4+3\sin \theta.</math>
::<math>0\leq \theta \leq 2\pi</math>
 
  
 
<span class="exam">(a) Sketch the curve.
 
<span class="exam">(a) Sketch the curve.
Line 6: Line 5:
 
<span class="exam">(b) Find the area enclosed by the curve.
 
<span class="exam">(b) Find the area enclosed by the curve.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 8 Solution|'''<u>Solution</u>''']]
|-
 
|The area under a polar curve &nbsp; <math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; is given by
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math>&nbsp; for appropriate values of &nbsp;<math>\alpha_1,\alpha_2.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 8 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a) &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)'''
 
|-
 
|&nbsp;&nbsp; '''(b)'''
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:30, 3 December 2017

A curve is given in polar coordinates by  

(a) Sketch the curve.

(b) Find the area enclosed by the curve.


Solution


Detailed Solution


Return to Sample Exam