Difference between revisions of "009C Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
  
::<math>r=1+\cos^2(2\theta)</math>
+
::<math>r=1+\cos^2(2\theta).</math>
  
 
<span class="exam">(a) Show that the point with Cartesian coordinates &nbsp;<math style="vertical-align: -15px">(x,y)=\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)</math>&nbsp; belongs to the curve.
 
<span class="exam">(a) Show that the point with Cartesian coordinates &nbsp;<math style="vertical-align: -15px">(x,y)=\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)</math>&nbsp; belongs to the curve.
Line 9: Line 9:
 
<span class="exam">(c) In Cartesian coordinates, find the equation of the tangent line at &nbsp;<math style="vertical-align: -15px">\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math>
 
<span class="exam">(c) In Cartesian coordinates, find the equation of the tangent line at &nbsp;<math style="vertical-align: -15px">\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' What two pieces of information do you need to write the equation of a line?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;You need the slope of the line and a point on the line.
 
|-
 
|'''2.''' How do you calculate &nbsp; <math style="vertical-align: -5px">y'</math> &nbsp; for a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;Since &nbsp; <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math>&nbsp; we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to convert this Cartesian point into polar.
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{r} & = & \displaystyle{\sqrt{x^2+y^2}}\\
 
&&\\
 
& = & \displaystyle{\sqrt{\frac{2}{4}+\frac{2}{4}}}\\
 
&&\\
 
& = & \displaystyle{\sqrt{1}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|-
 
|Also, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\tan \theta } & = & \displaystyle{\frac{y}{x}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|-
 
|So, &nbsp;<math style="vertical-align: -15px">\theta=\frac{\pi}{4}.</math>
 
|-
 
|Now, this point in polar is &nbsp;<math style="vertical-align: -15px">\bigg(1,\frac{\pi}{4}\bigg).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we plug in &nbsp;<math style="vertical-align: -15px">\theta=\frac{\pi}{4}</math>&nbsp; into our polar equation.
 
|-
 
|We get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{r} & = & \displaystyle{1+\cos^2\bigg(\frac{2\pi}{4}\bigg)}\\
 
&&\\
 
& = & \displaystyle{1+(0)^2}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|-
 
|So, the point &nbsp;<math style="vertical-align: -5px">(x,y)</math>&nbsp; belongs to the curve.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(b) &nbsp;
 
|-
 
|Insert graph
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">r=1+\cos^2(2\theta),</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dr}{d\theta}=-4\cos(2\theta)\sin(2\theta).</math>
 
|-
 
|Since
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math>
 
|-
 
|we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{-4\cos(2\theta)\sin(2\theta)\sin\theta+(1+\cos^2(2\theta))\cos\theta}{-4\cos(2\theta)\sin(2\theta)\cos\theta-(1+\cos^2(2\theta))\sin\theta}.}\\
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, recall from part (a) that the given point in polar coordinates is &nbsp;<math style="vertical-align: -15px">\bigg(1,\frac{\pi}{4}\bigg).</math>
 
|-
 
|Therefore, the slope of the tangent line at this point is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{m} & = & \displaystyle{\frac{-4\cos(\frac{\pi}{2})\sin(\frac{\pi}{2})\sin(\frac{\pi}{4})+(1+\cos^2(\frac{\pi}{2}))\cos(\frac{\pi}{4})}{-4\cos(\frac{\pi}{2})\sin(\frac{\pi}{2})\cos(\frac{\pi}{4})-(1+\cos^2(\frac{\pi}{2}))\sin(\frac{\pi}{4})}}\\
 
&&\\
 
& = & \displaystyle{\frac{0+(1)(\frac{\sqrt{2}}{2})}{0-(1)(\frac{\sqrt{2}}{2})}}\\
 
&&\\
 
& = & \displaystyle{-1.}
 
\end{array}</math>
 
|-
 
|Therefore, the equation of the tangent line at the point &nbsp;<math style="vertical-align: -5px">(x,y)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>y=-1\bigg(x-\frac{\sqrt{2}}{2}\bigg)+\frac{\sqrt{2}}{2}.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See above.
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; See above.
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>y=-1\bigg(x-\frac{\sqrt{2}}{2}\bigg)+\frac{\sqrt{2}}{2}</math>
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:25, 3 December 2017

A curve is given in polar coordinates by

(a) Show that the point with Cartesian coordinates    belongs to the curve.

(b) Sketch the curve.

(c) In Cartesian coordinates, find the equation of the tangent line at  


Solution


Detailed Solution


Return to Sample Exam