Difference between revisions of "009C Sample Final 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<span class="exam"> Consider the function | <span class="exam"> Consider the function | ||
− | ::<math>f(x)=e^{-\frac{1}{3}x}</math> | + | ::<math>f(x)=e^{-\frac{1}{3}x}.</math> |
<span class="exam">(a) Find a formula for the <math>n</math>th derivative <math style="vertical-align: -5px">f^{(n)}(x)</math> of <math style="vertical-align: -5px">f</math> and then find <math style="vertical-align: -5px">f'(3).</math> | <span class="exam">(a) Find a formula for the <math>n</math>th derivative <math style="vertical-align: -5px">f^{(n)}(x)</math> of <math style="vertical-align: -5px">f</math> and then find <math style="vertical-align: -5px">f'(3).</math> | ||
Line 9: | Line 9: | ||
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math> | ::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math> | ||
− | + | <hr> | |
− | + | [[009C Sample Final 3, Problem 5 Solution|'''<u>Solution</u>''']] | |
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | '''Solution | + | [[009C Sample Final 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 16:20, 3 December 2017
Consider the function
(a) Find a formula for the th derivative of and then find
(b) Find the Taylor series for at i.e. write in the form