Difference between revisions of "009C Sample Final 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> ::<span class="exam">b) <mat...") |
Kayla Murray (talk | contribs) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> Consider the function |
− | ::< | + | ::<math>f(x)=e^{-\frac{1}{3}x}.</math> |
− | + | <span class="exam">(a) Find a formula for the <math>n</math>th derivative <math style="vertical-align: -5px">f^{(n)}(x)</math> of <math style="vertical-align: -5px">f</math> and then find <math style="vertical-align: -5px">f'(3).</math> | |
− | + | <span class="exam">(b) Find the Taylor series for <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align: -5px">x_0=3,</math> i.e. write <math style="vertical-align: -5px">f(x)</math> in the form | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math> | |
− | ''' | + | <hr> |
+ | [[009C Sample Final 3, Problem 5 Solution|'''<u>Solution</u>''']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[009C Sample Final 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 16:20, 3 December 2017
Consider the function
(a) Find a formula for the th derivative of and then find
(b) Find the Taylor series for at i.e. write in the form