Difference between revisions of "009C Sample Final 3, Problem 5 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Consider the function ::<math>f(x)=e^{-\frac{1}{3}x}</math> <span class="exam">(a) Find a formula for the  <math>n</math>th derivative  <math s...")
 
 
Line 1: Line 1:
 
<span class="exam"> Consider the function
 
<span class="exam"> Consider the function
  
::<math>f(x)=e^{-\frac{1}{3}x}</math>
+
::<math>f(x)=e^{-\frac{1}{3}x}.</math>
  
 
<span class="exam">(a) Find a formula for the &nbsp;<math>n</math>th derivative &nbsp;<math style="vertical-align: -5px">f^{(n)}(x)</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and then find &nbsp;<math style="vertical-align: -5px">f'(3).</math>
 
<span class="exam">(a) Find a formula for the &nbsp;<math>n</math>th derivative &nbsp;<math style="vertical-align: -5px">f^{(n)}(x)</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and then find &nbsp;<math style="vertical-align: -5px">f'(3).</math>
Line 12: Line 12:
 
!Background Information: &nbsp;  
 
!Background Information: &nbsp;  
 
|-
 
|-
|The Taylor polynomial of  <math style="vertical-align: -5px">f(x)</math> &thinsp;at <math style="vertical-align:0px">a</math> is
+
|The Taylor polynomial of  &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at &nbsp;<math style="vertical-align:0px">a</math>&nbsp; is  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math>&nbsp; where &nbsp;<math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
 
|}
 
|}
  

Latest revision as of 16:20, 3 December 2017

Consider the function

(a) Find a formula for the  th derivative    of    and then find  

(b) Find the Taylor series for    at    i.e. write    in the form


Background Information:  
The Taylor polynomial of    at    is

         where  


Solution:

(a)

Step 1:  
We have
       
       
and
       
If we compare these three equations, we notice a pattern.
Thus,
       
Step 2:  
Since
       
we have
       

(b)

Step 1:  
Since
       
we have
       
Therefore, the coefficients of the Taylor series are
       
Step 2:  
Therefore, the Taylor series for    at    is
       


Final Answer:  
    (a)   
    (b)   

Return to Sample Exam