Difference between revisions of "009C Sample Final 3, Problem 5 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Consider the function ::<math>f(x)=e^{-\frac{1}{3}x}</math> <span class="exam">(a) Find a formula for the <math>n</math>th derivative <math s...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> Consider the function | <span class="exam"> Consider the function | ||
− | ::<math>f(x)=e^{-\frac{1}{3}x}</math> | + | ::<math>f(x)=e^{-\frac{1}{3}x}.</math> |
<span class="exam">(a) Find a formula for the <math>n</math>th derivative <math style="vertical-align: -5px">f^{(n)}(x)</math> of <math style="vertical-align: -5px">f</math> and then find <math style="vertical-align: -5px">f'(3).</math> | <span class="exam">(a) Find a formula for the <math>n</math>th derivative <math style="vertical-align: -5px">f^{(n)}(x)</math> of <math style="vertical-align: -5px">f</math> and then find <math style="vertical-align: -5px">f'(3).</math> | ||
Line 12: | Line 12: | ||
!Background Information: | !Background Information: | ||
|- | |- | ||
− | |The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> | + | |The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align:0px">a</math> is |
|- | |- | ||
| | | | ||
− | <math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> | + | <math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> |
|} | |} | ||
Latest revision as of 16:20, 3 December 2017
Consider the function
(a) Find a formula for the th derivative of and then find
(b) Find the Taylor series for at i.e. write in the form
Background Information: |
---|
The Taylor polynomial of at is |
where |
Solution:
(a)
Step 1: |
---|
We have |
and |
If we compare these three equations, we notice a pattern. |
Thus, |
Step 2: |
---|
Since |
we have |
(b)
Step 1: |
---|
Since |
we have |
Therefore, the coefficients of the Taylor series are |
Step 2: |
---|
Therefore, the Taylor series for at is |
Final Answer: |
---|
(a) |
(b) |