Difference between revisions of "009C Sample Final 3, Problem 4 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s). <span class="exam">(a) <math>\sum_{n=1}^{\infty} \frac{n!}{(2n)...") |
Kayla Murray (talk | contribs) |
||
| Line 10: | Line 10: | ||
|'''1.''' '''Ratio Test''' | |'''1.''' '''Ratio Test''' | ||
|- | |- | ||
| − | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | + | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, |
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| Line 29: | Line 27: | ||
| Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | | Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | ||
|- | |- | ||
| − | | Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math> | + | | Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math> converge. |
| − | |||
| − | |||
|} | |} | ||
| Line 48: | Line 44: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!} \frac{(2n)!}{n!}\bigg|}\\ | + | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!}\cdot \frac{(2n)!}{n!}\bigg|}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \frac{(2n)!}{n!}\bigg|}\\ | + | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{n!}\bigg|}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\ | ||
Latest revision as of 15:17, 3 December 2017
Determine if the following series converges or diverges. Please give your reason(s).
(a)
(b)
| Background Information: |
|---|
| 1. Ratio Test |
| Let be a series and Then, |
|
If the series is absolutely convergent. |
|
If the series is divergent. |
|
If the test is inconclusive. |
| 2. If a series absolutely converges, then it also converges. |
| 3. Alternating Series Test |
| Let be a positive, decreasing sequence where |
| Then, and converge. |
Solution:
(a)
| Step 1: |
|---|
| We begin by using the Ratio Test. |
| We have |
|
|
| Step 2: |
|---|
| Since |
| the series is absolutely convergent by the Ratio Test. |
| Therefore, the series converges. |
(b)
| Step 1: |
|---|
| For |
| we notice that this series is alternating. |
| Let |
| First, we have |
| for all |
| The sequence is decreasing since |
| for all |
| Step 2: |
|---|
| Also, |
| Therefore, |
| converges by the Alternating Series Test. |
| Final Answer: |
|---|
| (a) converges (by the Ratio Test) |
| (b) converges (by the Alternating Series Test) |