Difference between revisions of "009C Sample Final 3, Problem 4 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s). <span class="exam">(a) <math>\sum_{n=1}^{\infty} \frac{n!}{(2n)...") |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
|'''1.''' '''Ratio Test''' | |'''1.''' '''Ratio Test''' | ||
|- | |- | ||
− | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | + | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, |
− | |||
− | |||
|- | |- | ||
| | | | ||
Line 29: | Line 27: | ||
| Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | | Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | ||
|- | |- | ||
− | | Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math> | + | | Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math> converge. |
− | |||
− | |||
|} | |} | ||
Line 48: | Line 44: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!} \frac{(2n)!}{n!}\bigg|}\\ | + | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!}\cdot \frac{(2n)!}{n!}\bigg|}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \frac{(2n)!}{n!}\bigg|}\\ | + | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{n!}\bigg|}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\ |
Latest revision as of 16:17, 3 December 2017
Determine if the following series converges or diverges. Please give your reason(s).
(a)
(b)
Background Information: |
---|
1. Ratio Test |
Let be a series and Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
2. If a series absolutely converges, then it also converges. |
3. Alternating Series Test |
Let be a positive, decreasing sequence where |
Then, and converge. |
Solution:
(a)
Step 1: |
---|
We begin by using the Ratio Test. |
We have |
|
Step 2: |
---|
Since |
the series is absolutely convergent by the Ratio Test. |
Therefore, the series converges. |
(b)
Step 1: |
---|
For |
we notice that this series is alternating. |
Let |
First, we have |
for all |
The sequence is decreasing since |
for all |
Step 2: |
---|
Also, |
Therefore, |
converges by the Alternating Series Test. |
Final Answer: |
---|
(a) converges (by the Ratio Test) |
(b) converges (by the Alternating Series Test) |