Difference between revisions of "009C Sample Final 3, Problem 4 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s). <span class="exam">(a)  <math>\sum_{n=1}^{\infty} \frac{n!}{(2n)...")
 
 
Line 10: Line 10:
 
|'''1.''' '''Ratio Test'''  
 
|'''1.''' '''Ratio Test'''  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>&nbsp; Then,
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
 
|-
 
|-
 
|
 
|
Line 29: Line 27:
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; be a positive, decreasing sequence where &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; be a positive, decreasing sequence where &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math>\sum_{n=1}^\infty (-1)^na_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math>\sum_{n=1}^\infty (-1)^na_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>&nbsp; converge.
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; converge.
 
 
|}
 
|}
  
Line 48: Line 44:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!} \frac{(2n)!}{n!}\bigg|}\\
+
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!}\cdot \frac{(2n)!}{n!}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \frac{(2n)!}{n!}\bigg|}\\
+
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{n!}\bigg|}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\

Latest revision as of 16:17, 3 December 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  


Background Information:  
1. Ratio Test
        Let    be a series and    Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.

2. If a series absolutely converges, then it also converges.
3. Alternating Series Test
        Let    be a positive, decreasing sequence where  
        Then,    and    converge.


Solution:

(a)

Step 1:  
We begin by using the Ratio Test.
We have

       

Step 2:  
Since
       
the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.

(b)

Step 1:  
For
       
we notice that this series is alternating.
Let  
First, we have
       
for all  
The sequence    is decreasing since
       
for all  
Step 2:  
Also,
       
Therefore,
         
converges by the Alternating Series Test.


Final Answer:  
   (a)    converges (by the Ratio Test)
   (b)    converges (by the Alternating Series Test)

Return to Sample Exam