Difference between revisions of "009C Sample Final 3, Problem 1 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Which of the following sequences  <math style="vertical-align: -5px">(a_n)_{n\ge 1}</math>  converges? Which diverges? Give reasons for your answ...")
 
 
Line 8: Line 8:
 
!Background Information: &nbsp;  
 
!Background Information: &nbsp;  
 
|-
 
|-
|'''L'Hôpital's Rule'''  
+
|'''L'Hôpital's Rule, Part 1'''  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow c}f(x)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow c}g(x)=0,</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g</math>&nbsp; are differentiable functions
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;on an open interval &nbsp;<math style="vertical-align: 0px">I</math>&nbsp; containing &nbsp;<math style="vertical-align: -5px">c,</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)\ne 0</math>&nbsp; on &nbsp;<math style="vertical-align: 0px">I</math>&nbsp; except possibly at &nbsp;<math style="vertical-align: 0px">c.</math>&nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Then, &nbsp; <math style="vertical-align: -18px">\lim_{x\rightarrow c} \frac{f(x)}{g(x)}=\lim_{x\rightarrow c} \frac{f'(x)}{g'(x)}.</math>
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
 
|}
 
|}
  
Line 51: Line 49:
 
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1+\frac{1}{2n}\bigg)}\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1+\frac{1}{2n}\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}.}
+
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{(\frac{1}{n})}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 66: Line 64:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}}\\
+
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{(\frac{1}{n})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2x}\bigg)}{\frac{1}{x}}}\\
+
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2x}\bigg)}{(\frac{1}{x})}}\\
 
&&\\
 
&&\\
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{2x}{2x+1}\big(\frac{-1}{2x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\
+
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{2x}{2x+1}\cdot\big(-\frac{1}{2x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{1}{2}\bigg(\frac{2x}{2x+1}\bigg)}\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{1}{2}\bigg(\frac{2x}{2x+1}\bigg)}\\
Line 119: Line 117:
 
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{1+n}{n}\bigg)}\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{1+n}{n}\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}.}
+
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{(\frac{1}{n})}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 134: Line 132:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}}\\
+
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{(\frac{1}{n})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{1+x}{x}\bigg)}{\frac{1}{x}}}\\
+
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{1+x}{x}\bigg)}{(\frac{1}{x})}}\\
 
&&\\
 
&&\\
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x}{1+x}\big(\frac{-1}{x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\
+
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x}{1+x}\cdot\big(-\frac{1}{x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x}{1+x}}\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x}{1+x}}\\

Latest revision as of 16:11, 3 December 2017

Which of the following sequences    converges? Which diverges? Give reasons for your answers!

(a)  

(b)  


Background Information:  
L'Hôpital's Rule, Part 1

        Let    and    where    and    are differentiable functions

       on an open interval    containing    and    on    except possibly at   
       Then,  


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       

(b)

Step 1:  
First, we have
       
Step 2:  
Now, let
       
We then take the natural log of both sides to get
       
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       
Since
       
we have

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam