Difference between revisions of "009C Sample Final 3, Problem 1 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Which of the following sequences <math style="vertical-align: -5px">(a_n)_{n\ge 1}</math> converges? Which diverges? Give reasons for your answ...") |
Kayla Murray (talk | contribs) |
||
| Line 8: | Line 8: | ||
!Background Information: | !Background Information: | ||
|- | |- | ||
| − | |'''L'Hôpital's Rule''' | + | |'''L'Hôpital's Rule, Part 1''' |
|- | |- | ||
| | | | ||
| − | | + | Let <math style="vertical-align: -12px">\lim_{x\rightarrow c}f(x)=0</math> and <math style="vertical-align: -12px">\lim_{x\rightarrow c}g(x)=0,</math> where <math style="vertical-align: -5px">f</math> and <math style="vertical-align: -5px">g</math> are differentiable functions |
|- | |- | ||
| − | | | + | | on an open interval <math style="vertical-align: 0px">I</math> containing <math style="vertical-align: -5px">c,</math> and <math style="vertical-align: -5px">g'(x)\ne 0</math> on <math style="vertical-align: 0px">I</math> except possibly at <math style="vertical-align: 0px">c.</math> |
| − | | ||
|- | |- | ||
| − | | | + | | Then, <math style="vertical-align: -18px">\lim_{x\rightarrow c} \frac{f(x)}{g(x)}=\lim_{x\rightarrow c} \frac{f'(x)}{g'(x)}.</math> |
| − | | ||
|} | |} | ||
| Line 51: | Line 49: | ||
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1+\frac{1}{2n}\bigg)}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1+\frac{1}{2n}\bigg)}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}.} | + | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{(\frac{1}{n})}.} |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| Line 66: | Line 64: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}}\\ | + | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{(\frac{1}{n})}}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2x}\bigg)}{\frac{1}{x}}}\\ | + | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2x}\bigg)}{(\frac{1}{x})}}\\ |
&&\\ | &&\\ | ||
| − | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{2x}{2x+1}\big(\frac{ | + | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{2x}{2x+1}\cdot\big(-\frac{1}{2x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{1}{2}\bigg(\frac{2x}{2x+1}\bigg)}\\ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{1}{2}\bigg(\frac{2x}{2x+1}\bigg)}\\ | ||
| Line 119: | Line 117: | ||
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{1+n}{n}\bigg)}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{1+n}{n}\bigg)}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}.} | + | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{(\frac{1}{n})}.} |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| Line 134: | Line 132: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}}\\ | + | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{(\frac{1}{n})}}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{1+x}{x}\bigg)}{\frac{1}{x}}}\\ | + | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{1+x}{x}\bigg)}{(\frac{1}{x})}}\\ |
&&\\ | &&\\ | ||
| − | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x}{1+x}\big(\frac{ | + | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x}{1+x}\cdot\big(-\frac{1}{x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x}{1+x}}\\ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x}{1+x}}\\ | ||
Latest revision as of 15:11, 3 December 2017
Which of the following sequences converges? Which diverges? Give reasons for your answers!
(a)
(b)
| Background Information: |
|---|
| L'Hôpital's Rule, Part 1 |
|
Let and where and are differentiable functions |
| on an open interval containing and on except possibly at |
| Then, |
Solution:
(a)
| Step 1: |
|---|
| Let
|
| We then take the natural log of both sides to get |
| Step 2: |
|---|
| We can interchange limits and continuous functions. |
| Therefore, we have |
|
|
| Now, this limit has the form |
| Hence, we can use L'Hopital's Rule to calculate this limit. |
| Step 3: |
|---|
| Now, we have |
|
|
| Step 4: |
|---|
| Since we know |
(b)
| Step 1: |
|---|
| First, we have |
| Step 2: |
|---|
| Now, let |
| We then take the natural log of both sides to get |
| We can interchange limits and continuous functions. |
| Therefore, we have |
|
|
| Now, this limit has the form |
| Hence, we can use L'Hopital's Rule to calculate this limit. |
| Step 3: |
|---|
| Now, we have |
|
|
| Step 4: |
|---|
| Since we know |
| Since |
| we have |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |