Difference between revisions of "009C Sample Final 2, Problem 10 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
 
Line 2: Line 2:
 
::<span class="exam"><math>x=t^2</math>
 
::<span class="exam"><math>x=t^2</math>
 
::<span class="exam"><math>y=t^3</math>
 
::<span class="exam"><math>y=t^3</math>
::<span class="exam"><math>0\leq t \leq 2</math>
+
::<span class="exam"><math>1\leq t \leq 2</math>
 
<hr>
 
<hr>
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Background Information: &nbsp;  
 
!Background Information: &nbsp;  
 
|-
 
|-
|The formula for the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a parametric curve with &nbsp;<math style="vertical-align: -4px">\alpha \leq t \leq \beta </math>&nbsp; is  
+
|The arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a parametric curve with &nbsp;<math style="vertical-align: -4px">\alpha \leq t \leq \beta </math>&nbsp; is given by
 
|-
 
|-
 
|
 
|
Line 25: Line 25:
 
|Since &nbsp;<math style="vertical-align: -14px">y=t^3,~\frac{dy}{dt}=3t^2.</math>
 
|Since &nbsp;<math style="vertical-align: -14px">y=t^3,~\frac{dy}{dt}=3t^2.</math>
 
|-
 
|-
|Using the formula in Foundations, we have  
+
|Using the arc length formula, we have  
 
|-
 
|-
 
|
 
|

Latest revision as of 16:05, 3 December 2017

Find the length of the curve given by


Background Information:  
The arc length    of a parametric curve with    is given by

       


Solution:

Step 1:  
First, we need to calculate    and  
Since  
Since  
Using the arc length formula, we have

       

Step 2:  
Now, we have

       

Step 3:  
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Hence,
       


Final Answer:  
       

Return to Sample Exam