Difference between revisions of "009C Sample Final 2"
Kayla Murray (talk | contribs) (→ Problem 3 ) |
Kayla Murray (talk | contribs) |
||
(11 intermediate revisions by 2 users not shown) | |||
Line 7: | Line 7: | ||
<span class="exam">Test if the following sequences converge or diverge. Also find the limit of each convergent sequence. | <span class="exam">Test if the following sequences converge or diverge. Also find the limit of each convergent sequence. | ||
− | <span class="exam">(a) <math style="vertical-align: - | + | <span class="exam">(a) <math style="vertical-align: -16px">a_n=\frac{\ln(n)}{\ln(n+1)}</math> |
− | <span class="exam">(b) <math style="vertical-align: - | + | <span class="exam">(b) <math style="vertical-align: -15px">a_n=\bigg(\frac{n}{n+1}\bigg)^n</math> |
== [[009C_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009C_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
<span class="exam"> For each of the following series, find the sum if it converges. If it diverges, explain why. | <span class="exam"> For each of the following series, find the sum if it converges. If it diverges, explain why. | ||
− | <span class="exam">(a) <math>4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math> | + | <span class="exam">(a) <math style="vertical-align: -14px">4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math> |
− | <span class="exam">(b) <math>\sum_{n=1}^{ | + | <span class="exam">(b) <math>\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}</math> |
== [[009C_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | == [[009C_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
<span class="exam">Determine if the following series converges or diverges. Please give your reason(s). | <span class="exam">Determine if the following series converges or diverges. Please give your reason(s). | ||
− | <span class="exam">(a) <math>\sum_{n= | + | <span class="exam">(a) <math>\sum_{n=1}^{\infty} \frac{n!}{(2n)!}</math> |
− | <span class="exam">(b) <math>\sum_{n= | + | <span class="exam">(b) <math>\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1}</math> |
== [[009C_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | == [[009C_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
<span class="exam">(a) Find the radius of convergence for the power series | <span class="exam">(a) Find the radius of convergence for the power series | ||
− | ::<math>\sum_{n=1}^{ | + | ::<math>\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}.</math> |
<span class="exam">(b) Find the interval of convergence of the above series. | <span class="exam">(b) Find the interval of convergence of the above series. | ||
== [[009C_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | == [[009C_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
− | <span class="exam"> Find the Taylor Polynomials of order 0, 1, 2, 3 generated by <math>f(x)=\cos(x)</math> at <math>x=\frac{\pi}{4}.</math> | + | <span class="exam"> Find the Taylor Polynomials of order 0, 1, 2, 3 generated by <math style="vertical-align: -5px">f(x)=\cos(x)</math> at <math style="vertical-align: -14px">x=\frac{\pi}{4}.</math> |
== [[009C_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | == [[009C_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
− | <span class="exam">(a) Express the indefinite integral <math>\int \sin(x^2)~dx</math> as a power series. | + | <span class="exam">(a) Express the indefinite integral <math style="vertical-align: -13px">\int \sin(x^2)~dx</math> as a power series. |
− | <span class="exam">(b) Express the definite integral <math>\int_0^1 \sin(x^2)~dx</math> as a number series. | + | <span class="exam">(b) Express the definite integral <math style="vertical-align: -14px">\int_0^1 \sin(x^2)~dx</math> as a number series. |
== [[009C_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | == [[009C_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
− | <span class="exam">(a) Consider the function <math>f(x)=\bigg(1-\frac{1}{2}x\bigg)^{-2}.</math> Find the first three terms of its Binomial Series. | + | <span class="exam">(a) Consider the function <math style="vertical-align: -16px">f(x)=\bigg(1-\frac{1}{2}x\bigg)^{-2}.</math> Find the first three terms of its Binomial Series. |
<span class="exam">(b) Find its radius of convergence. | <span class="exam">(b) Find its radius of convergence. | ||
Line 48: | Line 48: | ||
== [[009C_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | == [[009C_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
− | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math>f(x)=\cos(x)</math> approximates <math>\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. | + | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\cos(x)</math> approximates <math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math> within 0.0001 of the actual value. |
== [[009C_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | == [[009C_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
Line 57: | Line 57: | ||
<span class="exam">(a) Sketch the curve. | <span class="exam">(a) Sketch the curve. | ||
− | <span class="exam">(b) Compute <math>y'=\frac{dy}{dx}.</math> | + | <span class="exam">(b) Compute <math style="vertical-align: -14px">y'=\frac{dy}{dx}.</math> |
− | <span class="exam">(c) Compute <math>y''=\frac{d^2y}{dx^2}.</math> | + | <span class="exam">(c) Compute <math style="vertical-align: -14px">y''=\frac{d^2y}{dx^2}.</math> |
== [[009C_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == | == [[009C_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == | ||
Line 66: | Line 66: | ||
::<span class="exam"><math>x=t^2</math> | ::<span class="exam"><math>x=t^2</math> | ||
::<span class="exam"><math>y=t^3</math> | ::<span class="exam"><math>y=t^3</math> | ||
− | ::<span class="exam"><math> | + | ::<span class="exam"><math>1\leq t \leq 2</math> |
Latest revision as of 16:02, 3 December 2017
This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.
(a)
(b)
Problem 2
For each of the following series, find the sum if it converges. If it diverges, explain why.
(a)
(b)
Problem 3
Determine if the following series converges or diverges. Please give your reason(s).
(a)
(b)
Problem 4
(a) Find the radius of convergence for the power series
(b) Find the interval of convergence of the above series.
Problem 5
Find the Taylor Polynomials of order 0, 1, 2, 3 generated by at
Problem 6
(a) Express the indefinite integral as a power series.
(b) Express the definite integral as a number series.
Problem 7
(a) Consider the function Find the first three terms of its Binomial Series.
(b) Find its radius of convergence.
Problem 8
Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.
Problem 9
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
Problem 10
Find the length of the curve given by