Difference between revisions of "009C Sample Final 2, Problem 9 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">A curve is given in polar coordinates by ::<span class="exam"><math>r=\sin(2\theta).</math> <span class="exam">(a) Sketch the curve. <span class="exam">(...")
 
 
Line 11: Line 11:
 
!Background Information: &nbsp;  
 
!Background Information: &nbsp;  
 
|-
 
|-
|How do you calculate &nbsp; <math style="vertical-align: -5px">y'</math> &nbsp; for a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)?</math>
+
|How do you calculate &nbsp;<math style="vertical-align: -5px">y'</math>&nbsp; for a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;Since &nbsp; <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math>&nbsp; we have
+
&nbsp; &nbsp; &nbsp; &nbsp;Since &nbsp;<math style="vertical-align: -5px">x=r\cos(\theta)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y=r\sin(\theta),</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{(\frac{dr}{d\theta})\sin\theta+r\cos\theta}{(\frac{dr}{d\theta})\cos\theta-r\sin\theta}.</math>
 
|}
 
|}
  
Line 50: Line 50:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{(\frac{dr}{d\theta})\sin\theta+r\cos\theta}{(\frac{dr}{d\theta})\cos\theta-r\sin\theta},</math>
 
|-
 
|-
 
|we have  
 
|we have  
Line 71: Line 71:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We have &nbsp; <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
+
|We have &nbsp; <math>\frac{d^2y}{dx^2}=\frac{(\frac{dy'}{d\theta})}{(\frac{dr}{d\theta})\cos\theta-r\sin\theta}.</math>
 
|-
 
|-
 
|So, first we need to find &nbsp; <math>\frac{dy'}{d\theta}.</math>
 
|So, first we need to find &nbsp; <math>\frac{dy'}{d\theta}.</math>

Latest revision as of 16:01, 3 December 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute  

(c) Compute  


Background Information:  
How do you calculate    for a polar curve  

       Since    and    we have

       


Solution:

(a)  
 

(b)

Step 1:  
Since  

       

Step 2:  
Since

       

we have

       

since
       

(c)

Step 1:  
We have  
So, first we need to find  
We have

       

Step 2:  
Now, using the resulting formula for     we get

       


Final Answer:  
    (a)    See above
    (b)    
    (c)    

Return to Sample Exam