Difference between revisions of "009C Sample Final 2, Problem 9 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">A curve is given in polar coordinates by ::<span class="exam"><math>r=\sin(2\theta).</math> <span class="exam">(a) Sketch the curve. <span class="exam">(...") |
Kayla Murray (talk | contribs) |
||
Line 11: | Line 11: | ||
!Background Information: | !Background Information: | ||
|- | |- | ||
− | |How do you calculate <math style="vertical-align: -5px">y'</math> for a polar curve <math style="vertical-align: -5px">r=f(\theta)?</math> | + | |How do you calculate <math style="vertical-align: -5px">y'</math> for a polar curve <math style="vertical-align: -5px">r=f(\theta)?</math> |
|- | |- | ||
| | | | ||
− | Since <math style="vertical-align: -5px">x=r\cos(\theta) | + | Since <math style="vertical-align: -5px">x=r\cos(\theta)</math> and <math style="vertical-align: -5px">y=r\sin(\theta),</math> we have |
|- | |- | ||
| | | | ||
− | <math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> | + | <math>y'=\frac{dy}{dx}=\frac{(\frac{dr}{d\theta})\sin\theta+r\cos\theta}{(\frac{dr}{d\theta})\cos\theta-r\sin\theta}.</math> |
|} | |} | ||
Line 50: | Line 50: | ||
|- | |- | ||
| | | | ||
− | <math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math> | + | <math>y'=\frac{dy}{dx}=\frac{(\frac{dr}{d\theta})\sin\theta+r\cos\theta}{(\frac{dr}{d\theta})\cos\theta-r\sin\theta},</math> |
|- | |- | ||
|we have | |we have | ||
Line 71: | Line 71: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> | + | |We have <math>\frac{d^2y}{dx^2}=\frac{(\frac{dy'}{d\theta})}{(\frac{dr}{d\theta})\cos\theta-r\sin\theta}.</math> |
|- | |- | ||
|So, first we need to find <math>\frac{dy'}{d\theta}.</math> | |So, first we need to find <math>\frac{dy'}{d\theta}.</math> |
Latest revision as of 16:01, 3 December 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
Background Information: |
---|
How do you calculate for a polar curve |
Since and we have |
|
Solution:
(a) |
---|
(b)
Step 1: |
---|
Since |
|
Step 2: |
---|
Since |
|
we have |
|
since |
(c)
Step 1: |
---|
We have |
So, first we need to find |
We have |
|
Step 2: |
---|
Now, using the resulting formula for we get |
|
Final Answer: |
---|
(a) See above |
(b) |
(c) |