Difference between revisions of "009C Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
<span class="exam">Find &nbsp;<math>n</math>&nbsp; such that the Maclaurin polynomial of degree &nbsp;<math>n</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f(x)=\cos(x)</math>&nbsp; approximates &nbsp;<math style="vertical-align: -13px">\cos \frac{\pi}{3}</math>&nbsp; within 0.0001 of the actual value.
+
<span class="exam">Find &nbsp;<math>n</math>&nbsp; such that the Maclaurin polynomial of degree &nbsp;<math>n</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f(x)=\cos(x)</math>&nbsp; approximates &nbsp;<math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math>&nbsp; within 0.0001 of the actual value.
  
 
<hr>
 
<hr>

Latest revision as of 15:57, 3 December 2017

Find    such that the Maclaurin polynomial of degree    of    approximates    within 0.0001 of the actual value.


Solution


Detailed Solution


Return to Sample Exam