Difference between revisions of "009C Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| (5 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\cos(x)</math> approximates <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. | + | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\cos(x)</math> approximates <math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math> within 0.0001 of the actual value. |
| − | + | <hr> | |
| − | + | [[009C Sample Final 2, Problem 8 Solution|'''<u>Solution</u>''']] | |
| − | |||
| − | |''' | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | '''Solution | + | [[009C Sample Final 2, Problem 8 Detailed Solution|'''<u>Detailed Solution</u>''']] |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 15:57, 3 December 2017
Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.